Monolithic Digital IC

SANYO

No.3345

LB1687

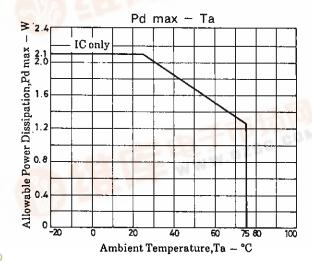
unit

3-Phase Brushless Motor Driver

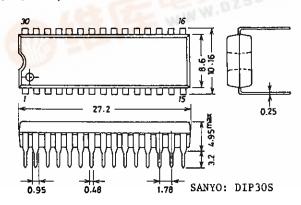
Applications

The LB1687 is a 3-phase brushless motor driver IC ideally suited for use in VTR capstan motor, drum motor drive applications.

Features and Functions

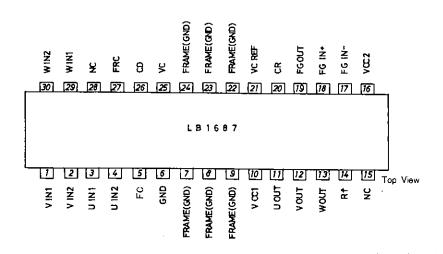

- (1) 120° voltage linear type
- (2) Soft switching type eliminating noises caused by current switching and making the values of external capacitors smaller (comparable to those of chip capacitors)
- (3) On-chip FG amplifier
- (4) On-chip thermal shutdown circuit
- (5) The FG signal can be used to detect the rotational speed of a motor so that the hall amp gain is changed in two steps, thus reducing torque ripple and noise.
- (6) Motor drivable at voltage down to motor supply voltage 5V

Absolute Maximum Ratings at Ta = 25°C

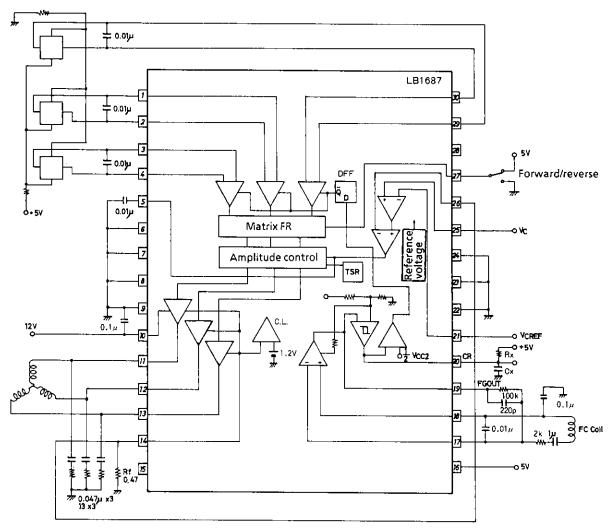

_	9			
	Maximum Supply Voltage	V _{CC} max1	20	V
		V _{CC} max2	7.0	V
	Output Supply Voltage	$V_{OUT.V.W.}$	22	V
	Output Current	I_{OUT}	1.5	Α
	Allowable Power Dissipation	Pd max	2.1	W
	Operating Temperature	Topr	-20 to +75	°C
	Storage Temperature	Tstg	-55 to + 125	°C

Allowable Operating Conditions at Ta = 25°C

anowabie Operaning O	ondidons at 1a - 20 C		umi
Supply Voltage	V _{CC} 1	5 to 18	V
	V_{CC}^2	4.3 to 6.5	V


Package Dimensions 3061 (unit: mm)

Electrical Characteristics at Ta = 2 [Power Supply]	$25^{\circ}\text{C}, V_{\text{CC}}1 = 1$	$12V, V_{CC}2 = 5V$	min	typ	max	unit
Supply Current 1	I _{CC} 1	$V_C = 0$, $R_L = \infty$		17	30	mA
Supply Current 2	I _{CC} 2	$V_C = 0$		6.5	9.5	mA
[Output]		C				
Output Saturation Voltage	$V_{O(sat)}1$	$I_{OUT} = 0.5 A, sink + source$		1.6	2.2	V
-	V _{O(sat)} 2	I _{OUT} =1.0A,sink+source		2.0	3.0	V
Output TRS Voltage	$V_{O(sus)}$	I _{OUT} = 20mA (See note.)	20			V
Output Quiescent Voltage	V_{QQ}	$V_C = 0$	5.8	6.1	6.4	V
[Hall Input-Output]	- 4	·				
Hall Amp Input Offset Voltage	V _H offset		- 5		+5	mV
Hall Amp Input Bias Current	I _H bias			1	5	μΑ
Hall Amp Common-Mode	V_H ch		1.3		3.7	v
Input Voltage Range						
Hall Input-Output Voltage Gain	$G_{ m VHO}$ 1			56		dB
	$G_{ m VHO}2$			43		dΒ
[Control-Output]						
Control-Output Drive Gain	G_{VCO}		38	41	44	dB
Control-Output CH Difference	ΔG_{VCO}		-2		+2	dB
[FG Amplifier]		•				
FG Amp Input Offset Voltage	VFG offset		-8		+8	mV
Open-Loop Voltage Gain	$G_{ m VFG}$	f = 1kHz		60		dB
Source Output Saturation Voltage	V_{FGOU}	$I_O = 2mA$	3.7			V
Sink Output Saturation Voltage	V_{FGOD}	$I_O = -2mA$			1.3	V
Common-Mode Signal	CHR	(See note.)		80		dB
Rejection Ratio						
FG Amp Common-Mode	$ m V_{FGCH}$		0		3.5	V
Input Voltage Range						
Phase Margin		(See note.)		20		deg.
[Motor Detection]						Ū
Motor Detection Amp			35	50	65	mV
Hysteresis Width						
CR Pin Threshold Voltage		V _{CR} changes from LOW to HIGH.	2.35	2.5	2.65	V
Thermal Shutdown Temperature	T_{SD}	(See note.)	150	180	210	°C
Thermal Shutdown Hysteresis	ΔT_{SD}	(See note.)		15		°C


Note: Values shown are design targets only. No measurements have been taken.

Pin Assignment

Equivalent Circuit Block Diagram

Unit (resistance: Ω , capacitance: F)

Truth Table

	Source			Input			Forward/Reverse Control	
			Sink	U	U V W	W	F/RC	
1	W phase	→	V phase	Н	Н	L	L	
	V phase	→	W phase				Н	
2	W phase	→	U phase	Н	L	L	L	
	U phase	→	W phase				Н	
3	V phase	→	W phase	L		,		L
	W phase	→	V phase		L	Н	Н	
4	U phase	→	V phase	L	Н	L	L	
	V phase	→	U phase				Н	
5	V phase	→	U phase	7,1	L	Н	L	
	U phase	→	V phase	Ħ			Н	
6	U phase	→	W phase	L	Н	Н	L	
	W phase	→	U phase				Н	

Input:

H: High level. One of the inputs should have a potential at least 0.2V higher than the other.

L: Low level. One of the inputs should have a potential at least 0.2V lower than the other.

Forward/reverse control:

 $\mbox{H}: 2.0 \mbox{ to } \mbox{V}_{CC} \mbox{2} \\ \mbox{L}: 0 \mbox{ to } 0.3 \mbox{V}$

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.