Ordering number : EN5038

CMOS LSI

LC72136, 72136M

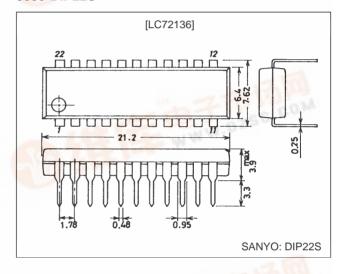
PLL Frequency Synthesizer for Electronic Tuning

Overview

The LC72136 and LC72136M are PLL frequency synthesizers for use in radio/cassette players. They allow high-performance AM/FM tuners to be implemented easily.

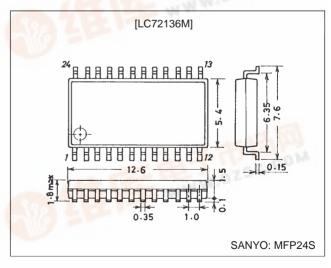
Features

- High-speed programmable frequency divider
 - FMIN: 10 to 160 MHz.....Pulse swallower (divide-by-two prescaler built in)
 - AMIN: 2 to 40 MHz......Pulse swallower 0.5 to 10 MHz......Direct division
- IF counter

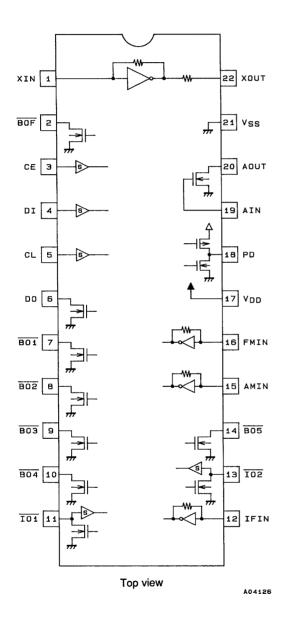

IFIN: 0.4 to 12 MHz.....For use as an AM/FM IF

- Reference frequency
 - Selectable from one of eight frequencies (crystal oscillator: 75 kHz)
 1, 3, 5, 3.125, 6.25, 12.5, 15, and 25 kHz
- · Phase comparator
 - Supports dead zone control
 - Built-in unlock detection circuit
 - Built-in deadlock clear circuit
- Built-in MOS transistor for forming an active low-pass filter
- I/O ports
 - Dedicated output ports: 6
- I/O ports: 2
- Supports clock time base output
- Serial Data I/O
 - Supports CCB format communication with the system controller.
- · Operating ranges
 - Supply voltage: 4.5 to 5.5 V
 - Operating temperature: −20 to +70°C
- Packages
 - —DIP22S/MFP24S
 - CCB is a trademark of SANYO ELECTRIC CO., LTD.
 - CCB is SANYO's original bus format and all the bus addresses are controlled by SANYO.

Package Dimensions

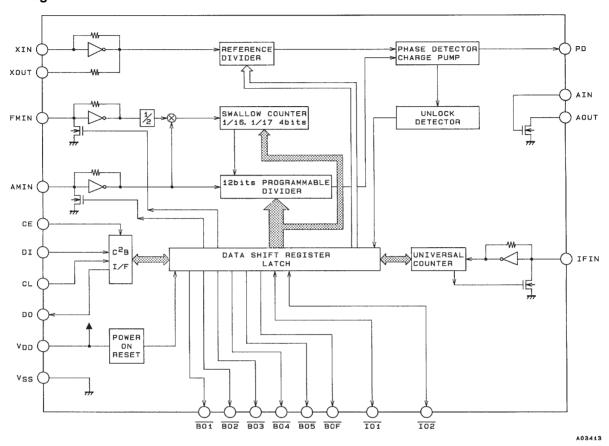

unit: mm

3059-DIP22S




unit: mm

3112-MFP24S



Pin Assignments

Block Diagram

Specifications

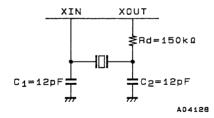
Absolute Maximum Ratings at $Ta=25^{\circ}C,\,V_{SS}=0~V$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{DD} max	V _{DD}	-0.3 to +7.0	V
	V _{IN} 1 max	CE, CL, DI, AIN	-0.3 to +7.0	V
Maximum input voltage	V _{IN} 2 max	XIN, FMIN, AMIN, IFIN	-0.3 to V _{DD} + 0.3	V
	V _{IN} 3 max	<u>101</u> , <u>102</u>	-0.3 to +15	V
	V _O 1 max	DO	-0.3 to +7.0	V
Maximum output voltage	V _O 2 max	XOUT, PD	-0.3 to V _{DD} + 0.3	V
·	V _O 3 max	BO1 to BO5, BOF, IO1, IO2, AOUT	-0.3 to +15	V
	I _O 1 max	BO1	0 to 3.0	mA
Maximum output current	I _O 2 max	AOUT, DO	0 to 6.0	mA
	I _O 3 max	BO2 to BO5, BOF, IO1, IO2	0 to 10.0	mA
Allewakie zawazadie zie zakie z	Delanasi	Ta ≤ 70°C: LC72136 (DIP22S)	350	mW
Allowable power dissipation	Pd max	Ta ≤ 70°C: LC72136M (MFP24S)	200	mW
Operating temperature	Topr		-20 to +70	°C
Storage temperature	Tstg		-40 to +125	°C

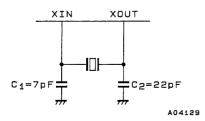
Allowable Operating Ranges at $Ta = -20 \ to \ +70 ^{\circ}C, \ V_{SS} = 0 \ V$

Parameter	Symbol	Conditions	min	typ	max	Unit
Supply voltage	V _{DD}	V _{DD}	4.5		5.5	V
Input high-level voltage	V _{IH} 1	CE, CL, DI	0.7 V _{DD}		6.5	V
Input high-level voltage	V _{IH} 2	<u>101</u> , <u>102</u>	0.7 V _{DD}		13	V
Input low-level voltage	V _{IL}	CE, CL, DI, $\overline{\text{IO1}}$, $\overline{\text{IO2}}$	0		0.3 V _{DD}	V
Output voltage	V _O 1	DO	0		6.5	V
Output voltage	V _O 2	BO1 to BO5, BOF, IO1, IO2, AOUT	0		13	V
	f _{IN} 1	XIN: V _{IN} 1		75		kHz
	f _{IN} 2	FMIN: V _{IN} 2	10		160	MHz
Input frequency	f _{IN} 3	AMIN: V _{IN} 3, SNS = 1	2		40	MHz
	f _{IN} 4	AMIN: $V_{IN}4$, SNS = 0	0.5		10	MHz
	f _{IN} 5	IFIN: V _{IN} 5	0.4		12	MHz
	V _{IN} 1	XIN: f _{IN} 1	400		1500	mVrms
	V _{IN} 2-1	FMIN: f = 10 to 130 MHz	40		1500	mVrms
	V _{IN} 2-2	FMIN: f = 130 to 160 MHz	70		1500	mVrms
Input amplitude	V _{IN} 3	AMIN: f _{IN} 3, SNS = 1	40		1500	mVrms
	V _{IN} 4	AMIN: $f_{IN}4$, SNS = 0	40		1500	mVrms
	V _{IN} 5-1	IFIN: f _{IN} 5, IFS = 1	40		1500	mVrms
	V _{IN} 5-2	IFIN: $f_{IN}6$, IFS = 0	70		1500	mVrms
Guaranteed crystal oscillator frequency	Xtal	XIN, XOUT*		75		kHz

Note: * Crystal oscillator recommended CI value


 $CI \le 35 \text{ k}\Omega$ (for a 75 kHz crystal)

The circuit constants for the crystal oscillator circuit depend on the crystal used, the printed circuit board pattern, and other items. Therefore we recommend consulting with the manufacturer of the crystal for evaluation and reliability.


The extremely high input impedance of the XIN pins means that applications must take the possibility of leakage into account.

Sample Oscillator Circuits

1. Seiko-Epson C-2-75kHz ($C_L = 11 \text{ pF}$)

2. Kyocera Corporation KF-38R5-09P0300 ($C_L = 9 pF$)

Electrical Characteristics at $Ta=-20\ to\ +70^{\circ}C,\ V_{SS}=0\ V$

Parameter	Symbol	Conditions	min	typ	max	Unit
	Rf1	XIN		8.0		MΩ
Internal feedback resistors	Rf2	FMIN		500		kΩ
internal reeuback resistors	Rf3	AMIN		500		kΩ
	Rf4	IFIN		250		kΩ
lata and a collision of a sistema	Rpd1	FMIN		200		kΩ
Internal pull-down resistors	Rpd2	AMIN		200		kΩ
Internal output resistor	Rd	XOUT		250		kΩ
Hysteresis	V _{HIS}	CE, CL, DI, IO1, IO2		0.1 V _{DD}		V
Output high-level voltage	V _{OH} 1	PD: I _O = -1 mA	V _{DD} – 1.0			V
	V _{OL} 1	PD: I _O = 1 mA			1.0	V
	V 0	BO1: I _O = 0.5 mA			0.5	V
	V _{OL} 2	BO1: I _O = 1 mA			1.0	V
	.,, .	DO: I _O = 1 mA			0.2	V
Output low-level voltage	V _{OL} 3	DO: I _O = 5 mA			1.0	V
		BO2 to BO5, BOF, IO1, IO2: I _O = 1 mA			0.2	V
	V _{OL} 4	BO2 to BO5, BOF, IO1, IO2: I _O = 5 mA			1.0	V
		BO2 to BO5, BOF, IO1, IO2: I _O = 8 mA			1.6	V
	V _{OL} 5	AOUT: I _O = 1 mA, AIN = 1.3 V			0.5	V
	I _{IH} 1	CE, CL, DI: V _I = 6.5 V			5.0	μA
	I _{IH} 2	101 , 102 : V ₁ = 13 V			5.0	μA
Leave and the state of the second	I _{IH} 3	$XIN: V_I = V_{DD}$	0.3	0.6	1.4	μA
Input high-level voltage	I _{IH} 4	FMIN, AMIN: V _I = V _{DD}	4.0		22	μA
	I _{IH} 5	IFIN: V _I = V _{DD}	8.0		44	μA
	I _{IH} 6	AIN: V _I = 6.5 V			200	nA
	I _{IL} 1	CE, CL, DI: V _I = 0 V			5.0	μA
	I _{IL} 2	IO1 , IO2 : V _I = 0 V			5.0	μA
	I _{IL} 3	XIN: V _I = 0 V	0.3	0.6	1.4	μA
Input low-level current	I _{IL} 4	FMIN, AMIN: V _I = 0 V	4.0		22	μA
	I _{IL} 5	IFIN: V _I = 0 V	8.0		44	μA
	I _{IL} 6	AIN: V _I = 0 V			200	nA
Outt -#11	I _{OFF} 1	BO1 to BO5, BOF, AOUT, IO1, IO2: V _O = 13 V			5.0	μA
Output off leakage current	I _{OFF} 2	DO: V _O = 6.5 V			5.0	μA
High-level tree-state off leakage current	l _{OFFH}	PD: V _O = V _{DD}		0.01	200	nA
Low-level tree-state off leakage current	I _{OFFL}	PD: V _O = 0 V		0.01	200	nA
Input capacitance	C _{IN}	FMIN		6		pF
	I _{DD} 1	V _{DD} : Xtal = 75 kHz, f _{IN} 2 = 130 MHz, V _{IN} 2 = 40 mVrms		5	10	mA
Current drain	I _{DD} 2	V _{DD} : PLL block stopped (PLL inhibit), Xtal oscillator operating (Xtal = 75 kHz)		0.1		mA
	I _{DD} 3	V _{DD} : PLL block stopped, Xtal oscillator stopped			10	μA

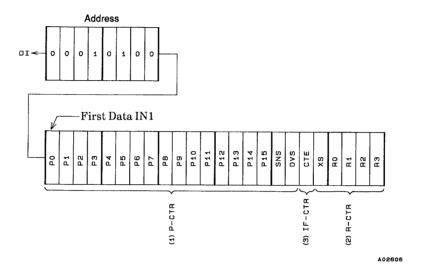
Pin Functions

Symbol	Pin No. (MFP pin numbers are in parentheses.)	Туре	Functions	Circuit configuration
XIN XOUT	1 (1) 22 (24)	Xtal	Crystal oscillator connections (75 kHz) The extremely high input impedance of the XIN pins means that applications must take the possibility of leakage into account.	A03414
FMIN	16 (17)	Local oscillator signal input	FMIN is selected when the serial data input DVS bit is set to 1. The input frequency range is from 10 to 160 MHz. The input signal passes through the internal divide-bytwo prescaler and is input to the swallow counter. The divisor can be in the range 272 to 65535. However, since the signal has passed through the divide-by-two prescaler, the actual divisor is twice the set value.	A02599
AMIN	15 (16)	Local oscillator signal input	AMIN is selected when the serial data input DVS bit is set to 0. When the serial data input SNS bit is set to 1: — The input frequency range is 2 to 40 MHz. — The signal is directly input to the swallow counter. — The divisor can be in the range 272 to 65535, and the divisor used will be the value set. When the serial data input SNS bit is set to 0: — The input frequency range is 0.5 to 10 MHz. — The signal is directly input to a 12-bit programmable divider. — The divisor can be in the range 4 to 4095, and the divisor used will be the value set.	A02598
CE	3 (4)	Chip enable	Set this pin high when inputting (DI) or outputting (DO) serial data.	A02600
CL	5 (6)	Clock	Used as the synchronization clock when inputting (DI) or outputting (DO) serial data.	A02600
DI	4 (5)	Input data	Inputs serial data transferred from the controller to the LC72136.	A02600
DO	6 (7)	Output data	Outputs serial data transferred from the LC72136 to the controller. The data output is determined by the DOC0 to DOC2 bits in the serial data.	A02601
V _{DD}	17 (18)	Power supply	The LC72136 power supply pin. (V _{DD} = 4.5 to 5.5 V) The power on reset circuit operates when power is first applied.	
V _{SS}	21 (22)	Ground	The LC72136 ground	

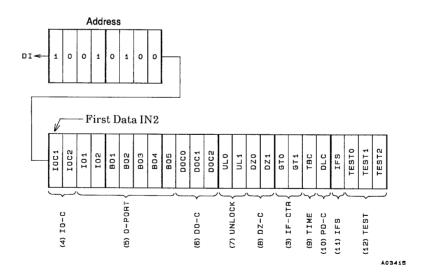
Continued on next page.

Continued from preceding page.

Symbol	Pin No. (MFP pin numbers are in parentheses.)	Туре	Functions	Circuit configuration
BO1 BO2 BO3 BO4 BO5	7 (8) 8 (9) 9 (10) 10 (11) 14 (15) 2 (3)	Output ports	Dedicated outputs The output states are determined by the BO1 to BO5 bits in the serial data. Data: 0 = open, 1 = low A time base signal (8 Hz) can be output from the BO1 pin. (When the serial data TBC bit is set to 1.) Care is required when using the BO1 pin, since it has a higher on impedance that the other output ports (pins BO2 to BO5). The output state of the BOF pin is determined by the serial data DVS bit. Thus this pin can be used as an FM band selection switch. (Note that it should not be used as an AM band selection switch since it is susceptible to noise from the crystal oscillator.) DVS data: 0 = open, 1 = low All output ports are set to the open state following a power on reset.	A02601
101 102	11 (12) 13 (14)	Input or output ports	I/O dual-use pins Interview of the serial data. Interview of the serial data. Interview of the input port, 1 = output port When specified for use as input ports: The state of the input pin is transmitted to the controller over the DO pin. Input state: low = 0 data value high = 1 data value When specified for use as output ports: The output states are determined by the IO1 and IO2 bits in the serial data. Data: 0 = open, 1 = low These pins function as input pins following a power on reset.	A02602
PD	18 (19)	Charge pump output	PLL charge pump output When the frequency generated by dividing the local oscillator signal frequency by N is higher than the reference frequency, a high level is output from the PD pin. Similarly, when that frequency is lower, a low level is output. The PD pin goes to the high-impedance state when the frequencies match.	A02603
AIN AOUT	19 (20) 20 (21)	LPF amplifier transistor connections	The n-channel MOS transistor used for the PLL active low-pass filter.	A02604
IFIN	12 (13)	IF counter	Accepts an input in the frequency range 0.4 to 12 MHz. The input signal is directly transmitted to the IF counter. The result is output starting the MSB of the IF counter using the DO pin. Four measurement periods are supported: 4, 8, 32, and 64 ms.	A02599


Serial Data I/O Procedures

The LC72136 inputs and outputs data using the Sanyo CCB (computer control bus) audio LSI serial bus format. This LSI adopts an 8-bit address format CCB.


	I/O mode				Add	Iress				Function
	I/O mode	В0	B1	B2	В3	A0	A1	A2	A3	Function
1	IN1 (82)	0	0	0	1	0	1	0	0	Control data input mode (serial data input) 24 data bits are input. See the "DI Control Data (serial data input) Structure" item for details on the meaning of the input data.
2	IN2 (92)	1	0	0	1	0	1	0	0	Control data input mode (serial data input) 24 data bits are input. See the "DI Control Data (serial data input) Structure" item for details on the meaning of the input data.
3	OUT (A2)	0	1	0	1	0	1	0	0	Data output mode (serial data output) The number of bits output is equal to the number of clock cycles. See the "DO Output Data (Serial Data Output) Structure" item for details on the meaning of the output data.
	CL (4) DI BO 1 DO (2) CL: r (2) CL: r	aormal l	B2	ВЗ	\ A0		1 1	AZ	A3	First Data OUT A02805

DI Control Data (serial data input) Structure

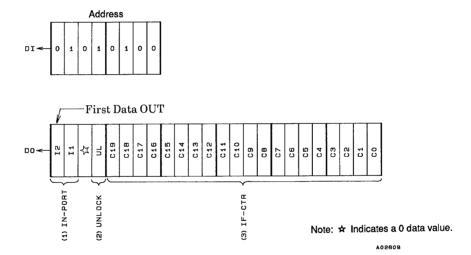
1. IN1 Mode

2. IN2 Mode

DI Control Data Functions

No.	Control block/data				De	scription			Related data
	Programmable divider data	Data that							
	P0 to P15	A binary v							
		DVC							
		DVS							
		1 * P0 272 to 65535 Twice the value of the setting							
		0	1	P0	272 to	o 65535	The value of the	he setting	
		0	0	P4		to 4095	The value of the	he setting	
(1)		Note: P0	to P3 are	ignored wh	en P4 is t	he LSB.			
	DVS, SNS						grammable dividetate. (*: Don't d	der, switches the care.)	
		DVS	SNS	Input pir	n l	Input frequen	icy range	BOF pin	
		1	*	FMIN		10 to 160	• •	Low	
		0	1	AMIN		2 to 40 l		Open	
		0	0	AMIN		0.5 to 10		Open	
					Divider" it	tem for details		Орсп	
	Reference divider data	Reference					<u> </u>		
	R0 to R3						foronco frazioni	101 (kHz)	
		R3	R2	R1	R0	Re	ference frequen	icy (KHZ)	
		0	0	0 0	0 1		25 25		
		0	0	1	0		25 25		
		0	0	1	1		25		
		0	1	0	0		12.5		
		0	1	0 1	1 0		6.25 3.125		
		0	1	1 1	1		3.125		
		1	0	0	0		5		
		1	0	0	1		5		
(2)		1	0	1	0		5		
(2)		1	0	1	1		1		
		1 1	1	0 0	0 1		3 15		
		1	1	1	0	PLL	INHIBIT + Xtal C	OSC STOP	
		1	1	1	1	,	PLL INHIBI		
		Note: PLI			•		T EE IIVI IIDI	1	
				nable divide	er and IF o	counter blocks	are stopped, the	FMIN, AMIN,	
			•	go to the podance state		n state, and the	e charge pump o	output pin goes to	
	XS	Oscillator	margin se	lection data	а				
				mode" The	oscillator	margin is redu	uced and the cry	stal radiation	
		is XS = 1: N	reduced.	lo.					
		_			ving a pow	ver-on reset.			
	IF counter control data	IF counter							
	CTE	CTE = 1:	Counter st	art					
		CTE = 0:							
	GT0, GT1	IF counter	measure	ment time o	determinat	tion			
		GT1	GT0	Meas	urement t	ime (ms)	Wait	t time (ms)	
(3)		0						IFS	
		0 1 8 3t0 4							
		1 0 32 7 to 8							
		Note: Se	the "IF C	Ounter Stri	64	m for details.		7 to 8	
	I/O port apositiontian data						nine		
(4)	I/O port specification data IOC1, IOC2	Data: 0 =	input mod	e, 1 = outpi	ut mode	e I/O dual-use	hiiip		
	Output port data	• BO1 to BO			out state d	lata			IOC1
(5)	BO1 to BO5, IO1, IO2	Data: 0 =	•						IOC2
		• "Data = 0:	Open" is	selected fo	llowing a	power-on rese	et.		

Continued from preceding page.

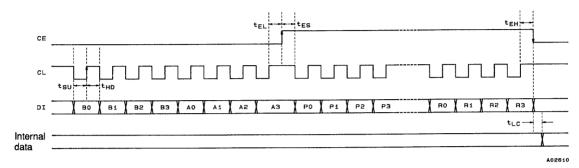

No.	Control block/data				Description		Related data
	DO pin control data	Data that	determine	s DO pin	output		
	DOC0, DOC1, DOC2	DOC2	DOC1	DOC0	DO pin state		
		0	0	0	Open		
		0	0	1	Low when the unlock state is detected		
		0	1	0	end-UC*1		
		0	1	1	Open		
		1 1	0	0	Open The IO1 pin state*2		
		1					
		1					
		The open					
		Note. 1.		— Counter	measurement completion check		UL0, UL1,
(6)		DO p	in	_X)) {{		CTE, IOC1, IOC2
			① (Count start	② Count end ③ CE:	: HI 402608	
					set and an IF count is started (CTE = $0 \rightarrow 1$), the		
				, ,	es to the open state. ht measurement completes, the DO pin goes lo	w and	
			the co	unt compl	etion check operation is enabled.		
		2			to the open state due to serial data I/O (CE: hi ate if the IO pin itself is set to be an output port.		
				•	es to the open state during the data input period		
		ре	eriod when	CE is hig	n in mode IN1 or IN2), regardless of the values of	the DO pin	
				•	DOC2). Also, the DO pin outputs the content of t		
				-	nronization with the CL pin signal during the data n CE is high in the OUT mode) regardless of the		
		th	e DO pin o	control data	a (DOC0 to DOC2).		
	Unlock detection data UL0, UL1	When a p	hase erro	r greater tl	detection range for PLL lock discrimination. nan the specified range occurs, the LC72136 de Don't care.)	etermines	
(7)		UL1	UL0	Ø	E detection width Detector or	utput	DOC0, DOC1,
. ,		0	0	Stopped	Open		DOC2
		0	1	0	øE is output directly		
		1	*	±6.67 µs			
	7			-	o pin goes low and the serial data output UL bit	is 0.	
	Phase comparator control data	• Phase coi	nparator (dead zone	control data		
	DZ0, DZ1	DZ1	DZ0		Dead zone mode		
		0	0	DZA			
(8)		0	1	DZB			
		1	0	DZC			
		1	1	DZD			
		Dead zon	e width: D	ZA < DZB	< DZC < DZD		
(9)	Clock time base TBC		0% duty o	lock time	pase signal can be output from BO1 by setting	TBC to 1.	BO1
	Charge pump control data	Data that	forcibly co	ontrols the	charge pump output		
	DLC	ח	LC		Charge pump output		
			0	Normal	0 1 1 1		
			1	Forced I	•		
(10)		Note: The					
			ced due to the 0 V.				
		The crysta	al oscillato	r circuit mu	d low state (DLC = 1) following a power on reset st be operating normally before this data is char (DLC = 0) state.		

Continued from preceding page.

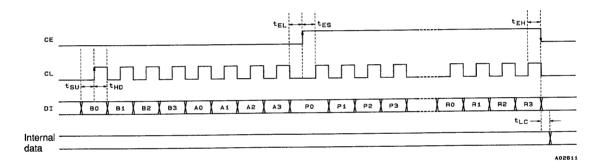
No.	Control block/data	Description	Related data					
(11)	IF counter control data IFS							
(12)	LSI test data TEST 0 to 3	LSI test data TEST0 TEST1 TEST2 All three bits must be set to 0. All the test data is set to 0 following a power-on reset.						

DO Output Data (Serial Data Output) Structure

3. OUT mode

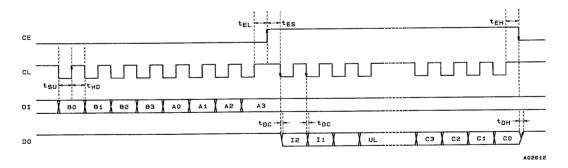


DO Output Data

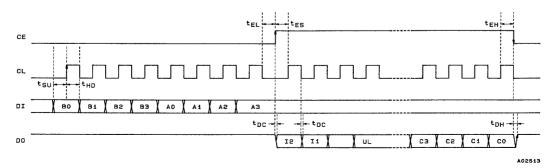

No.	Control block/data	Description	Related data
(1)	I/O port data I2, I1	Data latched from the states of the I/O ports, pins IO1 and IO2. (This data reflects the pin states, regardless of whether they are in input or output mode.) I1 ← IO1 pin state High: 1 I2 ← IO2 pin state Low: 0	IOC1, IOC2
(2)	PLL unlock data UL	Data latched from the state of the unlock detection circuit UL ← 0: Unlocked UL ← 1: Locked or in detection stopped mode	ULO, UL1
(3)	IF counter binary data C19 to C0	Data latched from the state of the IF counter, which is a 20-bit binary counter. C19 ← Binary counter MSB C0 ← Binary counter LSB	CTE, GT0, GT1

Serial Data Input (IN1/IN2) t_{SU} , t_{HD} , t_{EL} , t_{ES} , t_{EH} , \geq 0.75 μs t_{LC} < 0.75 μs

1. CL: Normal high

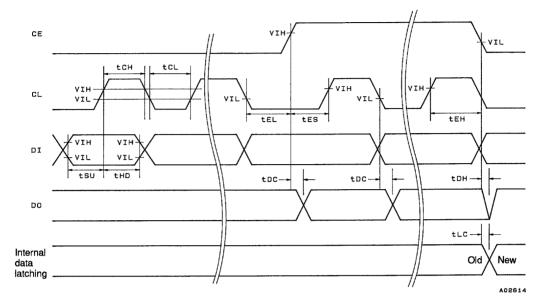


2. CL: Normal low

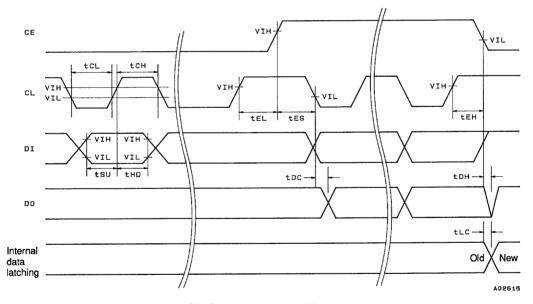


Serial Data Output (OUT) $t_{SU},\,t_{HD},\,t_{EL},\,t_{ES},\,t_{EH},\geq 0.75~\mu s~t_{DC},\,t_{DH}<0.35~\mu s$

1. CL: Normal high

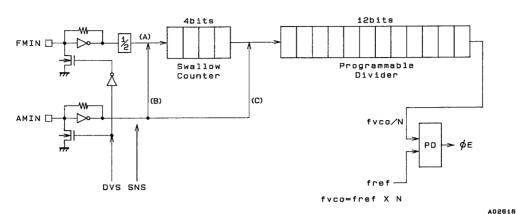


2. CL: Normal low



Note: Since the DO pin is an n-channel open drain circuit, the times for the data to change (t_{DC} and t_{DH}) will differ depending on the value of the pull-up resistor, printed circuit board capacitance.

Serial Data Timing


CL Stopped at the Low Level

CL Stopped at the High Level

Parameter	Symbol	Pins	Conditions	min	typ	max	Unit
Data setup time	t _{SU}	DI, CL		0.75			μs
Data hold time	t _{HD}	DI, CL		0.75			μs
Clock low-level time	t _{CL}	CL		0.75			μs
Clock high-level time	t _{CH}	CL		0.75			μs
CE wait time	t _{EL}	CE, CL		0.75			μs
CE setup time	t _{ES}	CE, CL		0.75			μs
CE hold time	t _{EH}	CE, CL		0.75			μs
Data latch change time	t _{LC}					0.75	μs
Data output time	t _{DC}	DO, CL	These times depend on the pull-up resistance			0.35	μs
ata output time	t _{DH}	DO, CE	and the printed circuit board capacitances.			0.35	μs

Programmable Divider Structure

DVS SNS Input pin Set divisor Actual divisor: N Input frequency range (MHz) FMIN 272 to 65535 10 to 160 Twice the set value Α В 0 AMIN 272 to 65535 2 to 40 1 The set value С 0 0 AMIN 4 to 4095 The set value 0.5 to 10

Note: * Don't care.

Sample Programmable Divider Divisor Calculations

- 1. For a 50 kHz FM step size (DVS = 1, SNS = *: FMIN selected)
 - FM RF = 90.0 MHz (IF = +10.7 MHz)

FM VCO = 100.7 MHz

PLL fref = 25 kHz (R0 to R1 = 1, R2 to R3 = 0)

100.7 MHz (FM VCO) \div 25 kHz (fref) \div 2 (FMIN: divide-by-two prescaler) = 2014 \rightarrow 07DE (HEX)

_	ED								7 0														
0	1	1	1	1	0	1	1	1	1	1	0	0	0	0	0	*	1			1	1	0	0
00	P1	ьг	Еط	P4	c C	96	Ь7	ь в	64	P10	P11	P12	P13	P14	P15	SNS	0 \ 8	CTE	×	В.	H.1	ЯЗ	ВЗ

A02817

- 2. For a 5 kHz SW step size (DVS = 0, SNS = 1: AMIN high-speed side selected)
 - SW RF = 21.75 MHz (IF = +450 kHz)

SW VCO = 22.20 MHz

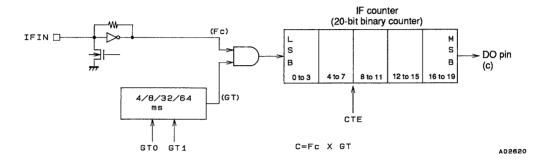
PLL fref = 5 kHz (R0 = R2 = 0, R1 = R3 = 1)

22.2 MHz (SW VCO) \div 5 kHz (fref) = 4440 \rightarrow 1158 (HEX)

	5	3		_	5	5				<u> </u>		,	:	L									
0	0	0	1	1	0	1	0	1	0	0	0	1	0	0	0	1	0			0	1	0	1
9 0	ъ.	P2	ь	P4	6	98	Ь7	ь в	60	P10	P11	P12	P13	P14	P15	SNS	DVS	CTE	×	ВО	H1	R2	ВЯ

A02618

- 3. For a 9 kHz MW step size (DVS = 0, SNS = 0: AMIN low-speed side selected)
 - MW RF = 1008 kHz (IF = +450 kHz)

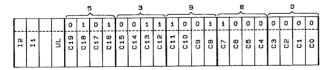

MW VCO = 1458 kHz

PLL fref = 3 kHz (R0 to R1 = 0, R2 to R3 = 1): using a 3 kHz reference frequency 1458 kHz (MW VCO) \div 3 kHz (fref) = 486 \rightarrow 1E6 (HEX)

					5		_				_	_											
*	*	*	*	0	1	1	0	٥	1	1	1	1	0	0	0	0	0			0	0	1	1
04	P1	P2	ьз	P 4	P5	PB	Р7	ЬВ	64	P10	P11	P12	P13	P14	P15	SNS	BVS	CTE	×	ВО	H ₁	ЯЗ	ВЗ

IF Counter Structure

The LC72136 IF counter is a 20-bit binary counter. The result of the count can be read out serially, MSB first, from the DO pin.

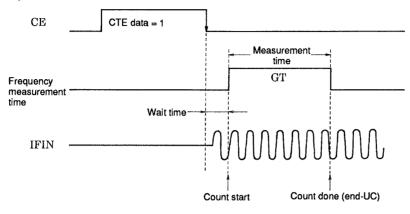


GT1	GT0	Measurement time								
GII	Gio	Measurement period (GT) (ms)	Wait time (t _{WU}) (ms)							
0	0	4	3 to 4							
0	1	8	3 to 4							
1	0	32	7 to 8							
1	1	64	7 to 8							

IF frequency (Fc) measurement consists of determining how many pulses enter the IF counter in a specified measurement time (GT).

Sample IF Counter Frequency Calculations

1. For a measurement time (GT) of 32 ms and a count value (C) of 53980 (hexadecimal), which is 342,400 (decimal) IF frequency (Fc) = $342,400 \div 32$ ms = 10.7 MHz


A0282

2. For a measurement time (GT) of 8 ms and a count value (C) of E10 (hexadecimal), which is 3600 (decimal) IF frequency (Fc) = $3600 \div 8$ ms = 450 kHz

A0282

IF Counter Operation

A02623

Before starting the IF count, the IF counter must be reset in advance by setting CTE in the serial data to 0. The IF count is started by changing the CTE bit in the serial data from 0 to 1. The serial data is latched by the LC72136 when the CE pin is dropped from high to low. The IF signal must be supplied to the IFIN pin in the period between the point the CE pin goes low and the end of the wait time at the latest. Next, the value of the IF count at the end of the measurement period must be read out during the period CTE is 1. This is because the IF counter is reset when CTE is set to 0.

Note: When operating the IF counter, the control microprocessor must first check the state of the IF-IC SD (station detect) signal and only after determining that the SD signal is present turn on IF buffer output and execute an IF count operation. Auto-search techniques that use only the IF counter are not recommended, since it is possible for IF buffer leakage output to cause incorrect stops at points where there is no station.

IFIN Minimum Sensitivity Ratings

f (MHz)

			,		
IFS	0.4 ≤ f < 0.5	0.5 ≤ f < 8	8 ≤ f ≤ 12		
1: Normal mode	40 mVrms (0.1 to 3 mVrms)	40 mVrms	40 mVrms (1 to 10 mVrms)		
0: Degradation mode	70 mVrms (10 to 15 mVrms)	70 mVrms	70 mVrms (30 to 40 mVrms)		

Note: Values in parentheses are actual performance values presented as reference data.

Unlock Detection Timing

1. Unlock Detection Determination Timing

Unlock detection is performed in the reference frequency (fref) period (interval). Therefore, in principle, unlock determination requires a time longer than the period of the reference frequency. However, immediately after changing the divisor N (frequency) unlock detection must be performed after waiting at least two periods of the reference frequency.

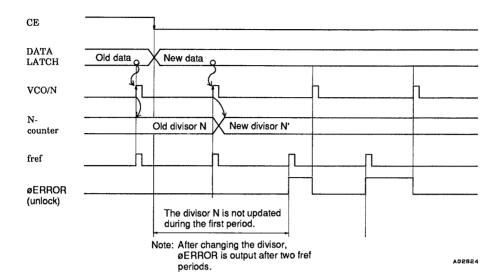


Figure 1 Unlock Detection Timing

For example, if fref is 1 kHz (and thus the period is 1 ms), after changing the divisor N, the system must wait at least 2 ms before checking for the unlocked state.

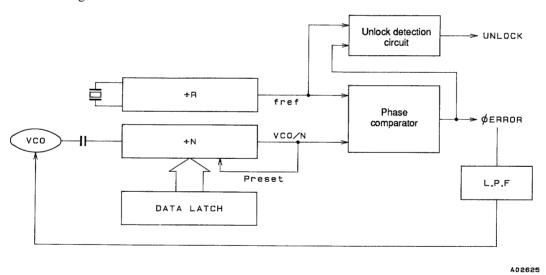


Figure 2 Circuit Structure

2. Unlock Detection Software

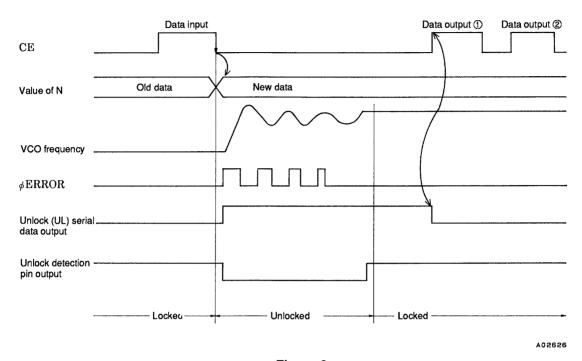
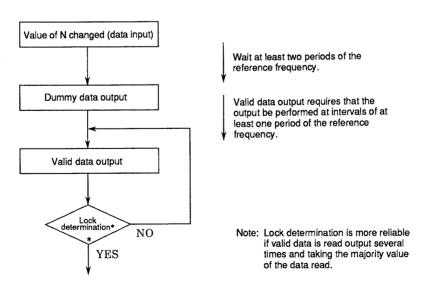
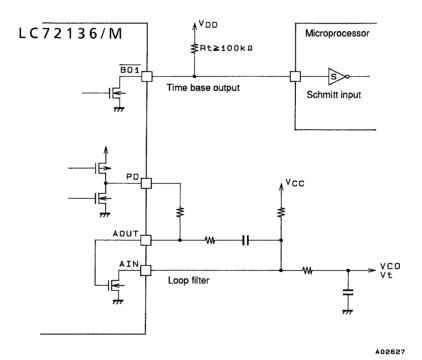



Figure 3

3. When Outputting Unlock Data Using Serial Data Output:

Once the LC72136 detects an unlocked state, it does not reset the unlock data (UL) until the next data output (or data input) operation is performed. At the data output ① point in Figure 3, although the VCO frequency is stable (locked), the unlock data remains set to the unlocked state since no data output has been performed since the value of N was changed. Thus, even though the frequency became stable (locked), from the point of view of the data, the circuit is in the unlocked state. Therefore, the data output ① immediately following a change to the value of N should be seen as a dummy data, and the data from the second data output (data output ②) and later outputs should be seen as valid data.


Lock Determination Flowchart

When directly outputting data from the DO pin (set up by the DO pin control data)

Since the DO pin outputs the unlocked state (locked: high, unlocked: low) the timing considerations in the technique described in the previous section are not necessary. After changing the value of N, the locked state can be determined after waiting at least two periods of the reference frequency.

Notes on Clock Time Base Usage

When the clock time base output is used, the value of the pull-up resistor for the output pin $(\overline{BO1})$ must be at least $100 \text{ k}\Omega$. This is to avoid degradation of the VCO C/N characteristics when using the built-in low-pass filter transistor to form the loop filter. Since the clock time base output pin and the low-pass filter transistor ground are the same node in the IC, the time base output pin current fluctuations must be suppressed to limit the influence on the low-pass filter. We recommend the use of a Schmitt input on the receiving controller (microprocessor) to prevent chattering.

Other Items

1. Notes on the Phase Comparator Dead Zone

DZ1	DZ0	Dead-zone mode	Charge pump	Dead zone			
0	0	DZA	ON/ON	− −0 sec			
0	1	DZB	ON/ON	-0 sec			
1	0	DZC	OFF/OFF	+0 sec			
1	1	DZD	OFF/OFF	+ +0 sec			

Since correction pulses are output from the charge pump even if the PLL is locked when the charge pump is in the ON/ON state, the loop can easily become unstable. This point requires special care when designing application circuits.

The following problems may occur in the ON/ON state.

- Side band generation due to reference frequency leakage
- Side band generation due to both the correction pulse envelope and low frequency leakage

Schemes in which a dead zone is present (OFF/OFF) have good loop stability, but have the problem that acquiring a high C/N ratio can be difficult. On the other hand, although it is easy to acquire a high C/N ratio with schemes in which there is no dead zone, it is difficult to achieve high loop stability. Therefore, it can be effective to select DZA or DZB, which have no dead zone, in applications which require an FM S/R ratio in excess of 90 to 100 dB, or in which an increased AM stereo pilot margin is desired. On the other hand, we recommend selecting DZC or DZD, which provide a dead zone, for applications which do not require such a high FM signal-to-noise ratio and in which either AM stereo is not used or an adequate AM stereo pilot margin can be achieved.

Dead Zone

The phase comparator compares fp to a reference frequency (fr) as shown in Figure 4. Although the characteristics of this circuit (see Figure 5) are such that the output voltage is proportional to the phase difference \emptyset (line A), a region (the dead zone) in which it is not possible to compare small phase differences occurs in actual ICs due to internal circuit delays and other factors (line B). A dead zone as small as possible is desirable for products that must provide a high S/N ratio.

However, since a larger dead zone makes this circuit easier to use, a larger dead zone is appropriate for popularly-priced products. This is because it is possible for RF signals to leak from the mixer to the VCO and modulate the VCO in popularly-priced products in the presence of strong RF inputs. When the dead zone is narrow, the circuit outputs correction pulses and this output can further modulate the VCO and generate beat frequencies with the RF signal.

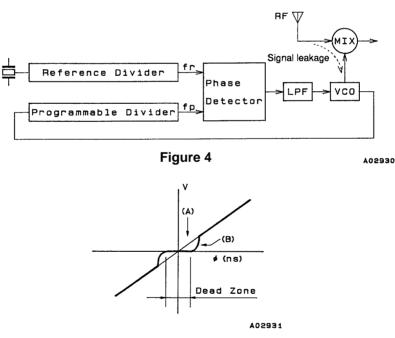
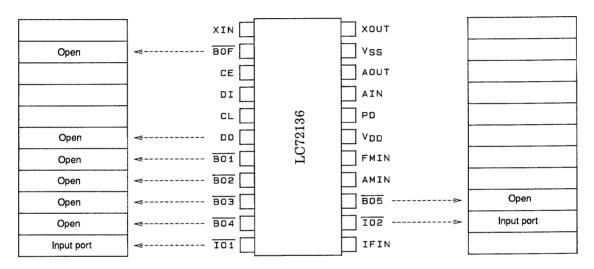


Figure 5

2. Notes on the FMIN, AMIN, and IFIN Pins

Coupling capacitors must be placed as close as possible to their respective pin. A capacitance of about 100 pF is desirable. In particular, if a capacitance of 1000 pF or over is used for the IF pin, the time to reach the bias level will increase and incorrect counting may occur due to the relationship with the wait time.

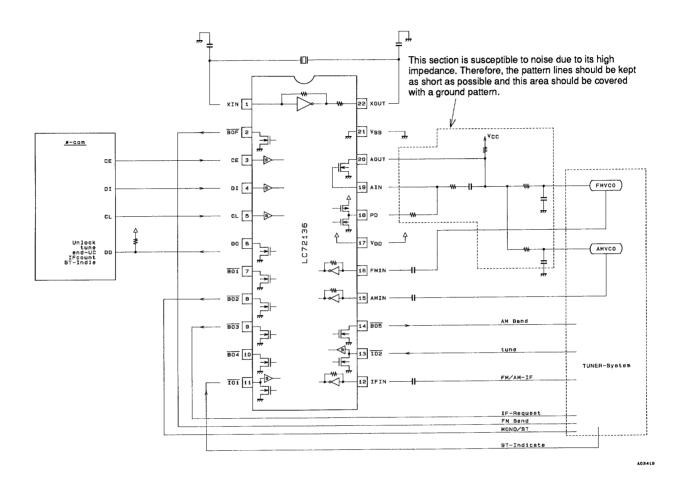
3. Notes on IF Counting → SD must be used in conjunction with the IF counting time When using IF counting, always implement IF counting by having the microprocessor determine the presence of the IF-IC SD (station detect) signal and turn on the IF counter buffer only if the SD signal is present. Schemes in which auto-searches are performed with only IF counting are not recommended, since they can stop at points where there is no signal due to leakage output from the IF counter buffer.


4. DO Pin Usage Techniques

In addition to data output mode times, the DO pin can also be used to check for IF counter count completion and for unlock detection output. Also, an input pin state can be output unchanged through the DO pin and input to the controller.

5. Power Supply Pins

A capacitor of at least 2000 pF must be inserted between the power supply V_{DD} and V_{SS} pins for noise exclusion. This capacitor must be placed as close as possible to the V_{DD} and V_{SS} pins.


Pin States Following a Power-On Reset

A03417

Sample Application System

(Using the DIP22S package)

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - 2 Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of October, 1995. Specifications and information herein are subject to change without notice.