Ordering number : EN4922C

CMOS LSI

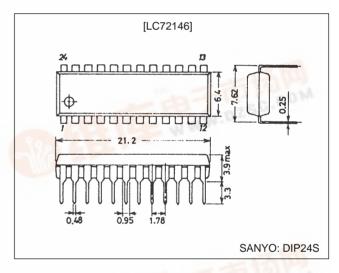
LC72146, 72146M

PLL Frequency Synthesizer for Electronic Tuning

Overview

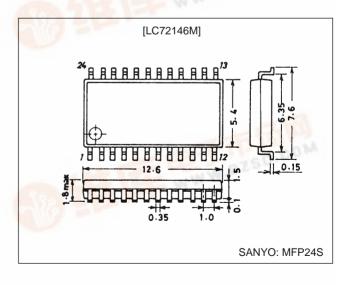
The LC72146 is a PLL frequency synthesizer LSI circuit for electronic tuning in car stereo systems. The LC72146 supports the construction of high-performance, multifunctional electronic tuning systems for the VHF MW, and LW bands.

WWW.OZSC.CO


Features

- · High-speed programmable dividers for
 - 10 to 160 MHz on FMIN using pulse swallower
 - 0.5 to 40.0 MHz on AMIN using pulse swallower and direct division
- General-purpose counters
 - HCTR for 0.4 to 25.0 MHz frequency measurement
 - LCTR for 10 to 500 kHz frequency measurement and 1.0 Hz to 20×10^3 kHz period measurement
- Reference frequencies: Twelve selectable reference frequencies (4.5 or 7.2 MHz crystal) 1, 3, 5, 9, 10, 3.125, 6.25, 12.5, 25, 30, 50 and 100 kHz
- · Phase comparator
 - Insensitive band control
 - Unlock detection
 - Sub-charge pump for high-speed locking
 - Deadlock clear circuit
- CCB input/output data interface
- Power-on reset circuit
- Built-in MOS transistor for a low-pass filter
- Inputs/outputs (using five general-purpose input/output ports)
 - Maximum of seven inputs (max)
 - Maximum of seven outputs (max/four n-channel open-drain and three CMOS outputs)
 - Time-base output for clock (8 Hz)
- Operating ranges
 - Supply voltage4.5 to 5.5 V
 - Opetating temperature40 to 85°C
- Package
 - DIP24S, MFP24S
 - CCB is a trademark of SANYO ELECTRIC CO., LTD.
 - CCB is SANYO's original bus format and all the bus addresses are controlled by SANYO.

Package Dimensions


unit: mm

3067-DIP24S

unit: mm

3112-MFP24S

Specifications

Absolute Maximum Ratings at $Ta=25^{\circ}C,\,V_{SS}=0~V$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{DD} max	V _{DD}	-0.3 to +7.0	V
	V _{IN} 1 max	CE, CL, DI	-0.3 to +7.0	V
Maximum input voltage	V _{IN} 2 max	XIN, FMIN, AIN, AMIN, HCTR/I-6, LCTR/I-7, I/O-4, I/O-5	-0.3 to V _{DD} + 0.3	V
	V _{IN} 3 max	I/O-1 to I/O-3	-0.3 to +15	V
	V _O 1 max	DO	-0.3 to +7.0	V
Maximum output voltage	V _O 2 max	XOUT, I/O-4, I/O-5, O-6, PD0, PF1, AIN	-0.3 to V _{DD} + 0.3	V
	V _O 3 max	I/O-1 to I/O-3, AOUT, O-7	-0.3 to +15	V
	I _O 1 max	I/O-4, I/O-5, O-6, O-7	0 to 3.0	mA
Maximum output current	I _O 2 max	DO, AOUT	0 to 6.0	mA
	I _O 3 max	I/O-1 to I/O-3	0 to 10	mA
All 11 Process	-	DIP24S:Ta ≤ 85°C	350	mW
Allowable power dissipation	Pd max	MFP24S:Ta ≤ 85°C	220	mW
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-55 to +125	°C

Allowable Operating Ranges at $Ta=-40\ to\ 85^{\circ}C,\ V_{SS}=0\ V$

Parameter	Symbol	Conditions	min	typ	max	Unit
Cumply valtage	V _{DD} 1	V_{DD}	4.5		5.5	V
Supply voltage	V _{DD} 2	V _{DD} : Serial data retain voltage	2.0			V
Input high-level voltage	V _{IH} 1	CE, CL, DI, I/O-1 to I/O-3	2.2		6.5	V
input nign-ievei voitage	V _{IH} 2	I/O-4, I/O-5, HCTR/I-6 and LCTR/I-7	2.2		V _{DD}	V
Input low-level voltage	V _{IL} 1	CE, CL, DI and I/O-1 to I/O-5, HCTR/I-6, LCTR/I-7	0		0.8	V
Input high-leve Ivoltage	V _{IH} 3	LCTR/I-7, Pulse wave*1	2.2		V_{DD}	V
Input low-level voltage	V _{IL} 2	LCTR/I-7, Pulse wave*1	0		0.8	V
Output valtage	V _O 1	DO	0		6.5	V
Output voltage	V _O 2	I/O-1 to I/O-3, AOUT, O-7	0		13	V
	f _{IN} 1	XIN; Sine wave, capacitive coupling	1.0		8.0	MHz
	f _{IN} 2	FMIN; Sine wave, capacitive coupling	10		160	MHz
land to sure and	f _{IN} 3	AMIN; Sine wave, capacitive coupling	0.5		40	MHz
Input frequency	f _{IN} 4	HCTR/I-6; Sine wave, capacitive coupling	0.4		25	MHz
	f _{IN} 5	LCTR/I-7; Sine wave, capacitive coupling	10		500	kHz
	f _{IN} 6	LCTR/I-7; Pulse wave, DC coupling*1	1.0		20 × 10 ³	Hz
Guaranteed oscillator element frequencies	Xtal	XIN, XOUT; CI \leq 120 Ω	4.0		8.0	MHz
	V _{IN} 1	XIN	200		1500	mVrms
	V _{IN} 2-1	FMIN; 50 ≤ f < 130 MHz*2	40		1500	mVrms
	V _{IN} 2-2	FMIN; 10 ≤ f < 50 MHz*2, 130 ≤ f 160 MHz	70		1500	mVrms
	V _{IN} 3-1	AMIN; 2 ≤ f < 25 MHz*2	40		1500	mVrms
	V _{IN} 3-2	AMIN; 25 ≤ f < 40 MHz*2	70		1500	mVrms
	V _{IN} 3-3	AMIN; 0.5 ≤ f < 2.5 MHz*2	40		1500	mVrms
Input amplitude	V _{IN} 3-4	AMIN; 2.5 ≤ f < 10 MHz*2	70		1500	mVrms
	V _{IN} 4-1	HCTR/I-6; 0.4 ≤ f < 25 MHz*3	40		1500	mVrms
	V _{IN} 4-2	HCTR/I-6; 8 ≤ f < 12 MHz*4	70		1500	mVrms
	V _{IN} 5-1	LCTR/I-7; 10 ≤ f < 400 kHz*3	40		1500	mVrms
	V _{IN} 5-2	LCTR/I-7; 400 ≤ f < 500 kHz*3	20		1500	mVrms
	V _{IN} 5-3	LCTR/I-7; 400 ≤ f < 500 kHz*4	70		1500	mVrms
Data set up time	t _{SU}	DI, CL*5	0.45			μS
Data hold time	t _{HD}	DI, CL*5	0.45			μS

Continued from preceding page.

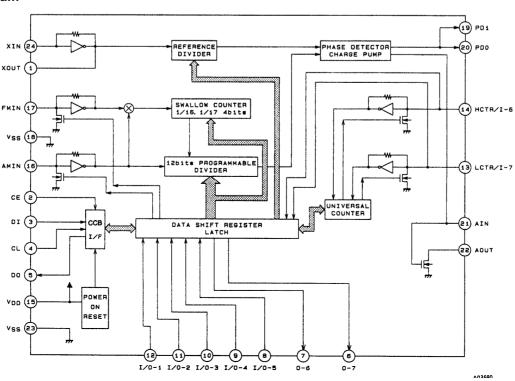
Parameter	Symbol	Conditions	min	typ	max	Unit
Clock low-level time	t _{CL}	CL*5	0.45			μs
Clock high-level time	t _{CH}	CL*5	0.45			μs
CE wait time	t _{EL}	CE, CL*5	0.45			μs
CE setup time	t _{ES}	CL, CE*5	0.45			μs
CE hold time	t _{EH}	CE, CL*5	0.45			μs
Chip enable to data latch time	t _{LC}	*5			0.45	μs
Data output time	t _{DC}	DO, CL; Depends on pull-up resistor			0.2	μs

Note: 1. Period measurement

- See the description of the structure of the programmable divider.
 With the CTC bit in the serial data set to 0
- 4. With the CTC bit in the serial data set to 1
- 5. See the description of the serial data timing.


Electrical Characteristics at $Ta = -40 \ to \ +85^{\circ}C, \ V_{SS} = 0 \ V$

Parameter	Symbol	Conditions		min	typ	max	Unit
	Rf1	XIN			1.0		mΩ
	Rf2	FMIN			500		kΩ
Internal feedback resistance	Rf3	AMIN			500		kΩ
	Rf4	HCTR/I-6			250		kΩ
	Rf5	XIN					kΩ
Sub charge pump internal resistance	R1S	AIN			100		Ω
Hysteresis	V _{HIS}	CE, CL, DI, LCTR/I-7			0.1 V _{DD}		V
			$I_{O} = 0.5 \text{ mA}$	V _{DD} – 0.5			V
Output high-level voltage	V _{OH} 1	PD0, PD1, I/O-4, I/O-5, O-6	I _O = 1 mA	V _{DD} – 1.0			V
, 5			I _O = 2 mA	V _{DD} – 2.0			V
	V _{OH} 2	AIN: I _O = 1 mA		V _{DD} – 0.6	V _{DD} – 0.3		V
		DD0 DD4 1/0 4	$I_{O} = 0.5 \text{ mA}$			0.5	V
	V _{OL} 1	1 ' ' '	I _O = 1 mA			mΩ kΩ kΩ kΩ kΩ V V V 0.3	
		1/O-5, O-6, O-7	I _O = 2 mA			2.0	V
	V _{OL} 2	AIN: I _O = 1 mA			0.3	0.6	V
Output low-level voltage		I ₂ = 2.5 mA	I _O = 1 mA			0.2	V
- Carpar ion ioroi remage	V _{OL} 3			0.5	V		
	1000	,, , , , , , , , , , , , , , , , , , , ,	$I_O = 5 \text{ mA}$			1.0	V V V
			I _O = 9 mA			1.8	V
	V _{OL} 4	DO; I _O = 5 mA				1.0	V
	V _{OL} 5	AOUT; I _O = 1 mA, AIN = 1.3	V			0.5	V
	I _{IH} 1	CE, CL, DI; V _I = 6.5 V				5.0	μA
	I _{IH} 2	I/O-1 to I/O-3; V _I = 13 V				5.0	μA
Input high-level current	I _{IH} 3	I/O-4, I/O-5, HCTR/I-6, LCTR	/I-7; V _I = V _{DD}			5.0	μA
input mgm lovor outront	I _{IH} 4	$XIN; V_I = V_{DD}$		2.0		11	μA
	I _{IH} 5	FMIN, AMIN; V _I = V _{DD}		4.0		22	μA
	I _{IH} 6	HCTR/I-6, LCTR/I-7; $V_I = V_{DI}$		8.0		44	μA
	I _{IL} 1	CE, CL, DI; V _I = 0 V				5.0	μA
	I _{IL} 2	I/O-1 to I/O5; V _I = 0 V				5.0	μA
Input low-level current	I _{IL} 3	HCTR/I-6, LCTR/I-7; $V_I = 0 \text{ V}$				5.0	μA
pacion lovoi odironi	I _{IL} 4	$XIN; V_I = 0 V$		2.0		11	μA
	I _{IL} 5	FMIN, AMIN; V _I = 0 V		4.0		22	μA
	I _{IL} 6	HCTR/I-6, LCTR/I-7; V _I = 0 V		8.0		44	μA


Continued from preceding page.

Parameter	Symbol	Conditions	min	typ	max	Unit
Output off leakage current	I _{OFF} 1	I/O-1 to I/O3, AOUT, O-7; V _O = 13 V			5.0	μA
Output on leakage current	I _{OFF} 2	DO; V _O = 6.5 V			5.0	μA
High-level three state off leakage current	I _{OFFH}	PD0, PD1, AIN; V _O = V _{DD}		0.01	200	nA
Lowh-level three state off leakage current	I _{OFFL}	PD0, PD1, AIN; V _O = 0 V		0.01	200	nA
Input cacitance	C _{IN}	FMIN		6		pF
Pull-down transistor	R _{pd} 1	FMIN	80	200	600	kΩ
on resistance	R _{pd} 2	AMIN	80	200	600	kΩ
		V _{DD} ; Xtal = 7.2 MHz, f _{IN} 2 = 160 MHz,				
	I _{DD} 1	$V_{IN}2 = 70 \text{ mVrms}, f_{IN}4 = 25 \text{ MHz}$		10	15	mA
Supply current		V _{IN} 4 = 40 mVrms				
	I _{DD} 2	V _{DD} ; PLL inhibited, crystal oscillator running (Xtal = 7.2 MHz)		0.5	1.5	mA
	I _{DD} 3	V _{DD} ; PLL inhibited, crystal oscillator stoped			10	μA

Pin Assignment

Block Diagram

Pin Functions

Number	Symbol	Туре	Function	Equivalent circuit
24 1	XIN XOUT	Xtal OSC	Connection for crystal oscillator element (7.2 or 4.5 MHz)	A02677
17	FMIN	Local oscillator signal input	Serial data input: FMIN is selected when DVS is set to 1. Input frequency range: 10 to 160 MHz The signal is transmitted directly to the swallow counter Divisor value range: 272 to 65535	A02678
16	AMIN	Local oscillator signal input	Serial data input: AMIN is selected when DVS is set to 0. Serial data input: when SNS is set to 1. Input frequency range: 2 to 40 MHz The signal is transmitted directly to the swallow counter. Divisor value range: 272 to 65535 Serial data input: when SNS is set to 0. Input frequency range: 0.5 to 10 MHz The signal is transmitted directly to the 12-bit programmable divider. Divisor value range: 4 to 4095	A02678
2	CE	Chip enable	IThis pin must be set high to input serial data to the LC72146 DI pin or to output serial data from the DO pin.	A02679
4	CL	Clock	Inputs the clock used for data synchronization when inputting serial data to the LC72146 DI pin or outputting serial data from the DO pin.	DS
3	DI	Input data	Input pin for serial data transmitted to the LC72146 from a controller.	D S A02679
5	DO	Output data	Output pin for serial data transmitted from the LC72146 to a controller.	A02680
15	V _{DD}	Power supply	The LC72146 power supply connection. A voltage between 4.5 and 5.5 volts must be supplied when the PLL circuit is used. The power on reset circuit operates when power is first applied.	
18 23	V _{DD}	Ground	The LC72146 ground connection.	
12 11 10	I/O-1 I/O-2 I/O-3	General-purpose I/O port	General-purpose I/O ports Output mode circuit type: open drain Function after a power on reset: input port Can be set up to function as output ports by bits I/O-1 to I/O-3 in the serial data sent from the controller.	A02681

Continued on next page.

Continued from preceding page.

Number	Symbol	Туре	Function	Equivalent circuit
9 8	1/O-4 1/O-5	General-purpose I/O port	General-purpose I/O ports Output mode circuit type: complementary Function after a power on reset: input port Can be set up to function as output ports by bits I/O-4 and I/O-5 in the serial data sent from the controller.	A02562
7	O-6	Output port	The LC72146 latches the OUT6 bit in the serial data and outputs it from pin O-6.	A02683
6	O-7	Output port	The LC72146 latches the OUT7 bit in the serial data and outputs it from pin O-7. Outputs a time base signal (8 Hz) when TBC is set to 1. Function after a power on reset: open circuit	A02684
20 19	PD0 PD1	Charge pump output	PLL charge pump output pin If the frequency generated by dividing the local oscillator frequency by N is higher than the reference frequency, a high level will be output from PD0, and if it is lower, a low level will be output. PD0 goes to the high-impedance state when the frequencies match. PD1 operates identically.	A02585
21 22	AIN AOUT	Connections for the low-pass filter transistor	Connections to the n-channel MOS transistor used for the PLL active low-pass filter. A high-speed locking circuit can be formed by using these pins with the built-in sub charge pump. See the item on the structure of the charge pump for details.	A02686
14	HCTR/I-6	General-purpose counter	HCTR is selected when CTS1 is set to 1. Input frequency range: 0.4 to 25 MHz The signal is passed through a divide-by-two circuit and then input to a general-purpose counter. This input also supports an integrating count function. The result is output from the DO output pin starting with the MSB of the general-purpose counter. See the item on the structure of the general-purpose counter for details. When the H/I-6 bit in the serial data is set to 0: This pin functions as an input port, and the value input is output from the DO pin.	A02587

Continued from preceding page.

Number	Symbol	Туре	Function	Equivalent circuit
13	LCTR/I-7	General-purpose counter	LCTR is selected when CTS1 is set to 0. If the CTS0 bit in the serial data is set to 1: The circuit operates in frequency measurement mode. nput frequency range: 10 to 500 kHz The signal is directly transmitted to the general-purpose counter without passing through the divide-by-two circuit. If the CTS0 bit in the serial data is set to 0: The circuit operates in period measurement mode. nput frequency range: 1 Hz to 20 kHz The measurement period can be set to be either one or two periods of the input signal, and if two period measurement is selected, the input frequency range becomes 2 Hz to 40 kHz. The result is output from the DO output pin starting with the MSB of the general-purpose counter. See the item on the structure of the general-purpose counter for details. When the L/I-7 bit in the serial data is set to 0: This pin functions as an input port. The value input is output from the DO pin.	A02688

Functional Description

Serial Data Input

The LC72146/72146M operating parameters are initialized by two 40-bit data words on the serial data input, DI, as shown in Figure 1 and Figure 2 and Table 1.

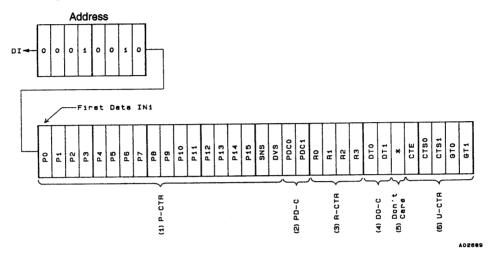


Figure 1 Input Data Word IN1

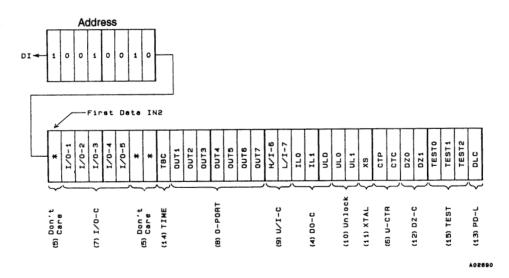


Figure 2 Input Data Word IN2

Table 1 Input Data Functions

No.	Name		Related bits							
		SNS flags as sho	The divider ration wn in Table 2 ar		and lsb are determined by the setting of the DVS and 3 are ignored if P4 is the LSB.					
		Table 2 Divider	_	1 .00	5: 00					
		DVS	SNS	LSB	Divider ratio (N)					
		1	×	P0	272 to 65535					
	P0 to P15,	0	1	P0	272 to 65535					
(1)	DVS, SNS	0	0	P4	4 to 4095					
			Note: ×= don't care Table 3 Frequency range settings							
		DVS	SNS	Input port	Input frequency range (MHz)					
		1	×	FMIN	10 to 160					
		0	1	AMIN	2 to 40					
		0	0	AMIN	0.5 to 10					
		Note: ×= don't d	_	7 (()))	0.0 to 10					
			DC1 control the gate of the low-pnp) to build a fas	pass filter transisto at locking PLL.	e as shown in Table 4. The sub-charge pump is r. This can be used in conjunction with PD0 and PD1					
(2)	PDC0, PDC1	PDC0	PDC1		Charge pump state	UL0, UL1, DLC				
	1 501	0	×	High impedance	• • • • • • • • • • • • • • • • • • • •					
		1	1	+	rates continuously)					
		1	0	Operating (whe	n PLL is unlocked)					
		Note: ×= don't c		e 16 for details.						
		Reference freque Bits R0 to R3 dis Table 5 Referen	able the PLL or s		e frequency as shown in Table 5.					
		R ₃	R ₂ R ₁	R ₀	Reference frequency (kHz)					
		0	0 0		100					
		0	0 0	1	50					
		0	0 1	0	25					
		0	0 1	1	25					
		0	1 0	0	12.5					
		0	1 0	1	6.25					
(0)	D0 / D0	0	1 1	0	3.125					
(3)	R0 to R3	0	1 1	1	3.125					
		1	0 0	0	10					
		1	0 0	1	9					
		1	0 1	0	5					
		1	0 1	1	1					
		1	1 0		3					
		1	1 0		30					
		1	1 1	0	PLL inhibited and crystal oscillator stopped					
		1	1 1	1	PLL inhibited					
				ogrammable divide come high impedar	r is stopped, AMIN and FMIN are pulled to ground, nce.					

Continued from preceding page.

No.	Name					Function					Related bits	
		DO and I/O								_		
							puts DO and I/0)5 as sho	wn in Table 6 and Table	7.		
		Table 6 Do	1					1		,		
		ULD	DT		DTO	DC)		I/O5			
		0	0			Unlock flag						
		0	0			Open *1		OUT5 fla	ag ^{*2} .			
		0	1			End-UC flag*1.						
		0 1	0			IN. See table 7. Open						
		1	0			Open Open						
		1	1			End-UC flag		Unlock f	lag ^{*2} .			
		1	1			IN. See table 7.						
						oose counter op	eration has finis	shed		ا ا		
						be an output po		J. 10 G.				
(4)	ULD, DT0, DT1, IL0, IL1		_			(OUT5, I/O1, I/O2, I/O5	
	D11,120,121		DO _	<i>\</i>))	\		ľ			
							-					
				St	art		Finish	CE	Hi			
							(I-1 chang	e)				
					Fic	gure 3 DO out	nut state		A02691			
		Table 7 IN	state s	election	1 12	guie 3 DO out	put state					
			State 3				IN ata	40		ıl		
		IL1 0		0 IL0	Once	n	IN sta	ie				
		0		1	Oper I1 in							
				0	I2 in	-						
		1		1	- - '	goes low when I	1 changes					
			I/O1 or I			utput port, IN be				1		
						crystal oscillator						
		[Whe	n refere	nce frequen	ncies are a	as these: R3 = F	R2 = R1 = 1; R0	0 = 0				
(5)	*	Don't care.										
		Counter cor		1 aglast the	ocuptor i	nput as shown i	n Tabla 0					
						ient mode sele						
		Table 0 Co	Juniter ii		1		CHOIL					
		CTS1	CTS0	Input		urement ode						
		1	×	HCTR	Freque	ency						
		0	1	LCTR	Freque							
		0	0	LCTR	Period							
		Note: ×= d	on't care	•								
	CTS0, CTS1, CTE,					esets the counte						
	GT0, GT1					ent time in freque mode as shown	,	nent mode	e or the number of			
(6)		Table 9 Me	-				iii rabic 5.				H/I6, L/I7	
					T	Frequency m	easurement		Period measurement	ıl		
		GT1		GT0	Mes	asurement	easurement		1 enou measurement			
				010	1	ation (ms)	Wait time	(ms)	Cycles			
		0		0		4	0 45 4		1	1		
		0		1		8	3 to 4	· 	'			
		1		0		32	7 to 8		2			
		1		1		64	1 10 0	•]		
	CTD CTC					and when CTP e CTE is set to		ait time: 1	I to 2 ms.)			
	CTP, CTC					etting CTC to 1.) to 30 m\	/ rms)			
		·							*			

Continued from preceding page.

No.	Name		Function						
(7)	I/O1 to I/O5	Bits I/O1 to I/O5 s	Input/output port control Bits I/O1 to I/O5 set the direction of the ports. Each pin is an input when the corresponding bit is 0, and an output, when the bit is 1. All ports are set to be inputs after power-on reset.						
(8)	OUT1 to OUT7	the corresponding	Output port data Bits OUT1 to OUT7 set the output values of the O-1 to O-7 output ports. Each output is open or high whe the corresponding bit is 1, and low, when the bit is 0. A bit is ignored if the corresponding port is an input port or the unlock output.						
(9)	H/I6, L/I7		7 select the opera en H/I-6 is 1, HC	TR/I-6 is the HCTR input. When L	-7 pins. When H/I-6 is 0, HCTR/I-6 is an _/I-7 is 0, LCTR/I-7 is an input port, and	CTS0, CTS1			
		Bits UL0 and UL1 state as shown in unlock detector or	PLL unlock detect control bits UL0 and UL1 select the phase error threshold and extension (ØE) used to detect the PLL unlocked tate as shown in Table 10 and Figure 4. When the phase error is greater than the selected error, the PLL nlock detector output goes low. Table 10 Unlock detection and extension selection						
		UL1	ULO	Phase error	Detector output				
		0	0	Stopped	Open				
		0	1	0	øE output				
		1	0	±0.56 µs	øE with 1 to 2 ms extension				
(10)	UL0, UL1	1	1	±1.11 µs	øE with 1 to 2 ms extension	ULD, DT0, DT1			
		ים	Expansion 1 to 2 ms 1/0-5 Unlock state output A02692 Figure 4 Phase-error extension						
(11)	XS		oscillator frequer	ncy. When XS is 1, the frequency reset.	is 7.2 MHz, and when XS is 0,				
		Phase comparato Bits DZ0 and DZ1 Table 11 Insens	select the phase	comparator insensitive band, or eselection	dead zone.				
		DZ1	DZ0	Insensitive band	d (dead zone) mode				
(12)	DZ0, DZ1	0	0	1	DZA				
(14)	DZU, DZ I	0	1		DZB				
		1	0		DZC				
		1	1	[DZD				
		DZA is selected a	fter power-on res	et.					
(13)	DLC	Charge pump con Bit DLC controls t and when DLC is This feature can b control voltage V _{tt} Normal operating							
(14)	TBC	When TBC is 1 th		signal can be output from pins 0 the invalid. TBC is set to 0 by the	, ,	OUT7			
(15)	TEST0 to TEST2	Test data Bits TEST0 to TE power-on reset.	ST2 are used for	in-factory device testing. Set then	n all to 0. They are set to zero after a				

Serial Data Output

The 40-bit data word output on DO has the format and functions as shown in Figure 5 and Table 12, respectively.

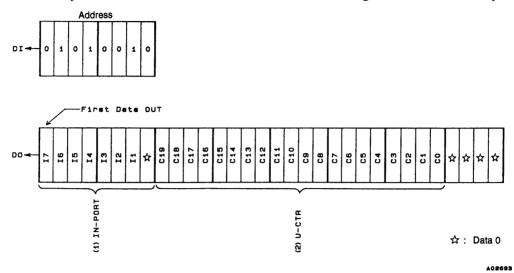
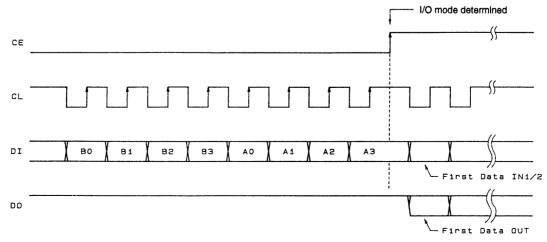


Figure 5 Output Data Word Out

Table 12 Input Data Functions


No.	Name	Function	Related bits
(1)	l1 to l7	Input port data Bits I-1 to I-7 reflect the data latched into each input port when the device changes to data output mode. I6 and I7 are zero when the corresponding port is a counter input. I1 to I5 correspond to the I/O1 to I/O5 ports, and I6 and I7, to the HCTR/I6 and LCTR/I7 inputs, respectively.	I/O-1 to I/O-5, H/I-6, L/I-7 OUT1 to OUT5
(2)	C0 to C19	Counter contents Bits C0 to C19 are the latched contents of the 20-bit binary counter. C19 is the msb. C0 is the lsb.	CTS0, CTS1, CTE

Serial Data Input/Output Mode Selection

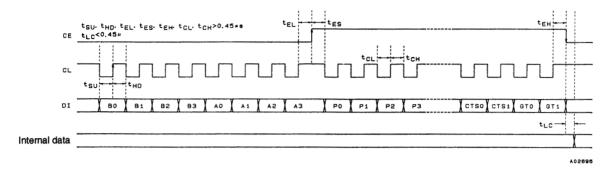
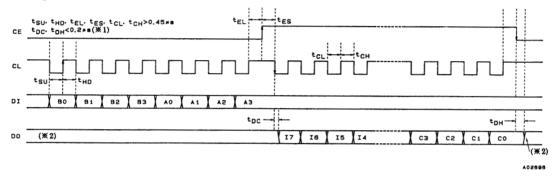

The LC72146/M use the CCB (computer control bus) serial data format. The first eight bits form the address, shown in Figure 6, used to select the mode of operation as shown in Table 13.

Table 13 Serial Data Input/Output Mode Selection


Innut/autnut mada	Address							Function		
Input/output mode	B0 B1 B2 B3 A0 A1 A2 A3		Function							
IN1	0	0	0	1	0	0	1	0	32-bit control data input	
IN2	1	0	0	1	0	0	1	0	32-bit control data input	
OUT	UT 0 1 0 1 0 0 1 0 O 1 O Output data Data is output if the clock is active		Output data. Data is output if the clock is active.							

1. Serial data input (IN1/IN2)

2. Serial data output (OUT)

Note: 1. The data conversion time varies with the value of the pull-up resistor, since the DO pin is an n-channel open drain circuit.

2. The DO pin is normally open.

Programmable Divider

The configuration of the programmable divider is shown in Figure 7. The input mode selection is shown in Table 14, and the input sensitivity, in Table 15.

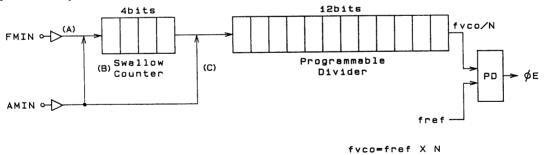


Figure 7 Programmable Divider

A02697

Table 14 Programmable Divider Selection

DVS	SNS	Divisor setting (NO)	Input frequency range	Input port
1	×	272 to 65535	10 to 160 MHz	FMIN
0	1	272 to 65535	2 to 40 MHz	AMIN
0	0	4 to 4095	0.5 to 10 MHz	AMIN

Note: \times = don't care

Table 15 Input Sensitivity (Target Sensitivity)

	Minimum input sensitivity (f [MHz])			
(A) FMIN	10 ≤ f < 50	50 ≤ f < 130	130 ≤ f < 160	
(A) FIVIIN	70 mVrms	40 mVrms	70 mVrms	
(D) AMINI	2 ≤ f < 25	25 ≤ f < 40		
(B) AMIN	40 mVrms	70 mVrms	_	
(C) AMINI	0.5 ≤ f < 2.5	2.5 ≤ f < 10		
(C) AMIN	40 mVrms	70 mVrms	_	

CTC: Input sensitivity switching data. When CTC is 1 the input sensitivity is degraded. However, the actual values will be:

 $HCTR \rightarrow 30 \text{ to } 40 \text{ mVrms (frequency: } 10.7 \text{ MHz)}$

LCTR \rightarrow 10 to 15 mVrms (frequency: 450 kHz)

CTP: The input pull-down resistor (when CTE is 0) can be disabled by setting CTP to 1.

CTP must be set to 1 at least 4 ms before CTE is set to 1. CTP should be set to 0 if the counter is not used.

When CTP is set to 1 wait time is reduced at 1 to 2 ms.

The LC72146 includes a general-purpose 20-bit binary counter whose value can be read out from the DO pin, msb first. When using this counter for frequency measurement, one of four measurement times (4, 8, 32, or 64 ms) is selected by GT0 and GT1. The frequency input to either the HCTR or the LCTR pin can be measured by determining the number of pulses input to the counter during the measurement period.

This counter can be used to measure the period of the signal input to the LCTR pin by determining how many cycles of a reference signal (900 kHz) are input to the counter during one or two periods of the LCTR pin signal.

The counter is started by setting the serial data CTE bit to 1. While serial data is latched in the LC72146 when CE falls from high to low, input to the HCTR or the LCTR pin must be provided within the waiting period that follows CE being set low.

Next, after the measurement completes, the value of the counter must be read out during the period that CTE is 1. (The general-purpose counter is reset when CTE is set to 0.)

It should be emphasized here that the counter should be reset before measurement by setting CTE to 0.

Also note that although the signal input to the LCTR pin is input to the counter directly, the signal input to the HCTR pin is divided by two internally before being input to the counter. Accordingly, the value of the counter will be 1/2 the actual frequency input to the HCTR pin.

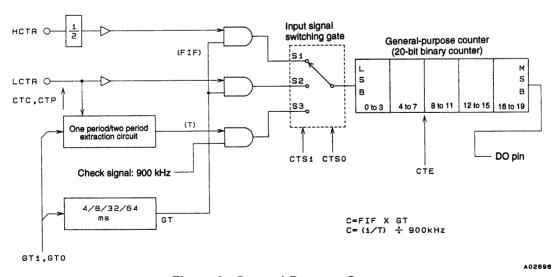
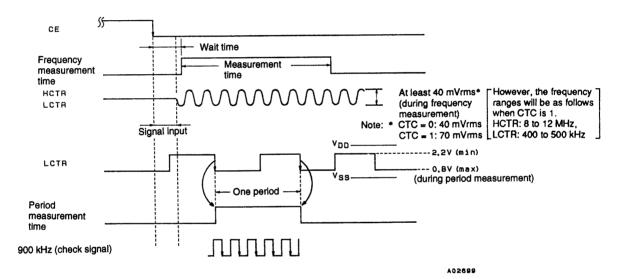
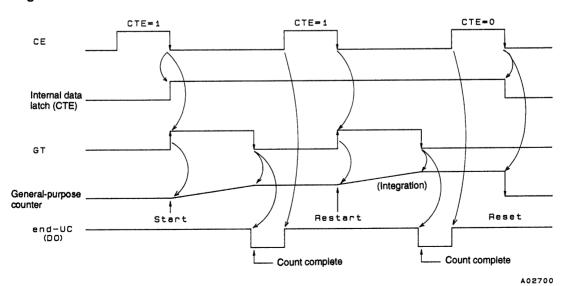


Figure 8 General-Purpose Counter

	CTS1	CTS0	Input pin	Measurement mode	Frequency range	Input sensitivity
S1	1	_	HCTR	Frequency	0.4 to 25.0 MHz	40 mVrms*
S2	0	1	LCTR	Frequency	10 to 500 kHz	40 mVrms*
S3	0	0	LCTR	Period	1.0 to 20 × 10 ³ Hz	(pulse)


Note: * CTC = 0: 40 mVrms

CTC = 1: 70 mVrms


However, the frequency ranges will be as follows when CTC is 1.

HCTR: 8 to 12 MHz, LCTR: 400 to 500 kHz

GT1	GT0	Frequency mea	Period measurement		
GII		Measurement time (ms)	Wait time (ms)	mode	
0	0	4	3 to 4	One period	
0	1	8	3 10 4	One period	
1	0	32	7 to 8	Two periods	
1	1	64	7 10 8		

Integrating Count

Note: CTE: 0 → • General-purpose counter reset

General-purpose counter start

 Restarts on a new 1 setting In integrated count mode, the count value is accumulated in the general-purpose counter.

Care is required to handle counter overflow.

Counter values: 0_H to FFFFF_H (1,048,575)

To implement the integrating count operation leave CTE set to 1. When the serial data (IN1) is transmitted again, the general-purpose counter will start to measure the input again and the result will be added to the count.

Charge Pump

The charge pump configuration is shown in Figure 9.

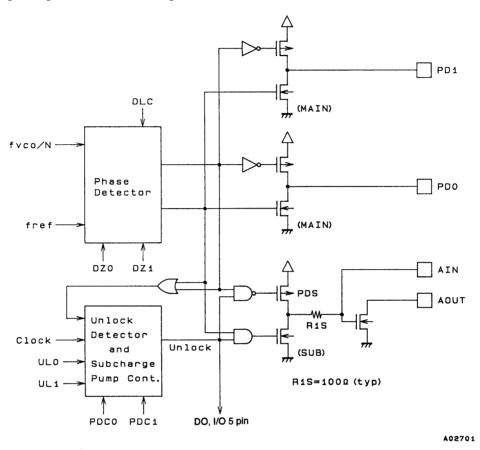


Figure 9 Charge Pump

	PDC1	PDC0	PDS (sub-charge pump state)
0 — High impedance		High impedance	
	1	1	Charge pump operates (normal operation)
	1	0	Charge pump operates (when unlocked)

DLC	PD1, PD0, PDS
0	Normal operation
1	Forced to low

When unlock is detected following a channel change, PDS (the sub-charge pump) operates. The value of R1 changes to R1M // R1S (R1S \approx 100 Ω), as shown in Figure 10, decreasing the low-pass filter time-constant and accelerating PLL locking.

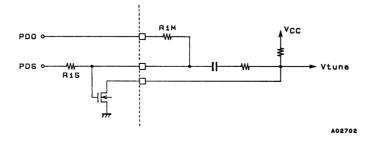


Figure 10 Charge Pump Connections

The unlock detection data UL1 must be set to 1. The unlock detection range will be set to ± 0.56 µs or ± 1.11 µs. If a phase difference in excess of these values is detected the circuit will go to the unlock state and the sub-charge pump will operate. When the circuit approaches the lock state and the phase difference falls under the unlock detection range, the sub-charge pump operation will stop, i.e., the sub-charge pump will go to the high impedance state.

Note: 1. Notes on the phase comparator dead zone

DZ1	DZ0	Dead zone mode	Charge pump	Dead zone
0	0	DZA	ON/ON	0 s
0	1	DZB	ON/ON	−0 s
1	0	DZC	OFF/OFF	+0 s
1	1	DZD	OFF/OFF	+ +0 s

Cases where the charge pump is in the ON/ON state require special care during system design since the charge pump outputs correction pulses even when the PLL is locked and it is easy for the loop to become unstable. The following problems may occur in the ON/ON state.

- ① Sidebands may be generated by reference frequency leakage.
- 2 Sidebands may be generated by low frequency leakage due to the correction pulse envelope.

The settings that have a dead zone (the OFF/OFF settings) provide good loop stability, but it is hard to achieve a good S/N ratio with these settings. Inversely, the settings with no dead zone (the ON/ON settings) allow a high S/N ratio to be achieved but it is hard to achieve good loop stability with these settings.

Therefore, it can be effective to select either the DZA or DXB setting, i.e., a setting which has no dead zone, when an S/N ratio of between 90 and 100 dB or higher is required in FM mode, or when the AM stereo pilot margin needs to be increased. However, in cases where such a high FM S/N ratio is not required and where an adequate AM stereo pilot margin can be achieved or AM stereo is not used, either the DZC or DZD setting, i.e., a setting which has a dead zone, should be selected.

Dead Zone Definition

The phase comparator compares fp with a reference frequency (fr) as shown in Figure 11. Figure 12 shows the characteristics of an ideal phase comparator, which outputs an output voltage (A) that is proportional to the phase difference ø. However, in an actual IC, a region (dead zone) in which minute phase differences cannot be detected occurs due to internal circuit delays and other factors. To implement an end product with a high S/N ration, the dead zone should be as small as possible.

However, there are cases where a larger dead zone can make a popularly-priced model easier to use. This is because it is possible for RF leakage from the mixer to the VCO to modulate the VCO in popularly-priced models when a strong RF input is applied. When the dead zone is small an output that compensates for this problem is generated, and this output may itself modulate the VCO and generate beating with the RF frequency.

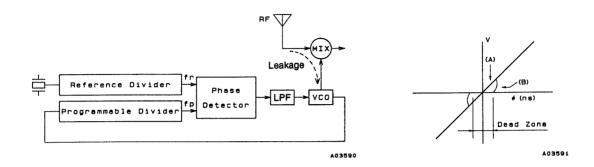
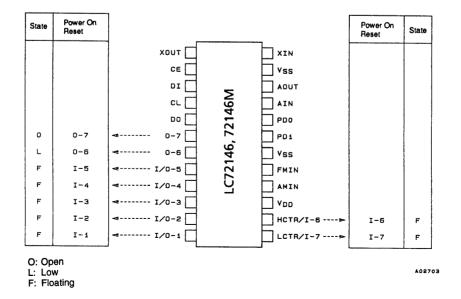


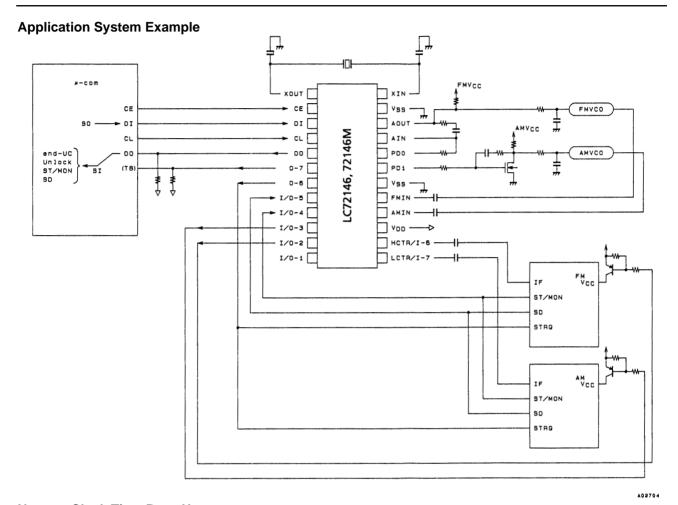
Figure 11 Figure 12

2. FMIN, AMIN, HCTR and LCTR

These inputs should each be capacitively coupled using a 50 to 100 pF capacitor. Also, these capacitors should be mounted as close as possible to their respective inputs.

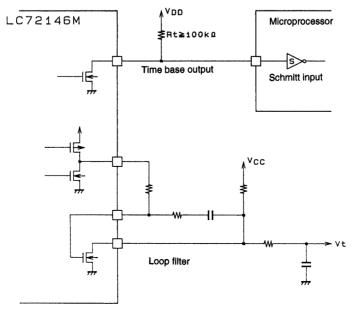
3. IF counting using HCTR or LCTR


The LC72146 can perform IF count tuning when connected to an SD (station detector) signal from an IF IC. IF counting should start when the SD signal becomes active.

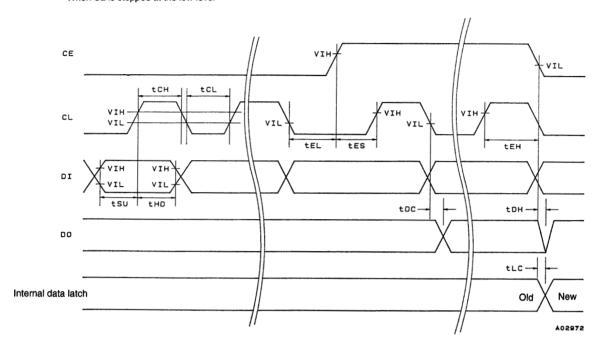

Note on IF counting: The SD (station detect) signal must be used in conjunction with IF counting. When using the general-purpose counter for IF counting, be sure to determine whether or not there is an SD signal from the IF IC. The IF counter buffer should be turned on and IF counting performed only if there is an SD signal. Autosearch techniques that use only the IF counter are not recommended, since it is possible for IF buffer leakage output to cause incorrect stops at points where there is no station.

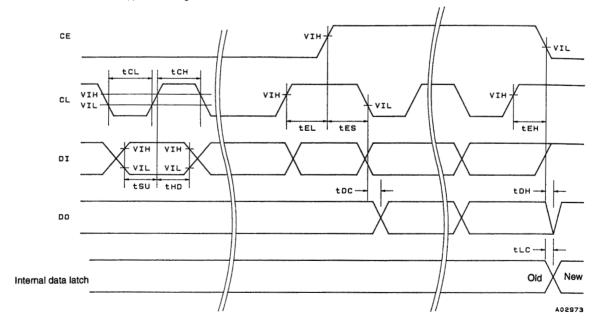
4. Using the DO pin

In modes other than data output mode, the DO pin is also used for counter completion, unlock detection, and for checking for changes in the input pin. (In these cases the DO pin will change from the high to the low level.) The state of the input pin can be input to the controller directly through the DO pin.


Pin States at Power On and Reset

Note on Clock Time Base Usage


A resistor of at least $100 \text{ k}\Omega$ must be used as the clock time base output pin (O-7) pull-up resistor. Also, the use of a Schmitt circuit is recommended in the controller (microprocessor) input circuit to prevent chattering. Forming a loop filter with the built-in low-pass filter transistor will also serve to prevent degradation of the VCO C/N characteristics. Since the grounding points for the clock time base output pin and the low-pass filter transistor are a common point within the IC, current fluctuations in the clock time base output pin must be kept to a minimum to limit influencing the low-pass filter.


A02705

Serial Data Timing

When CL is stopped at the low level

When CL is stopped at the high level

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of July, 1996. Specifications and information herein are subject to change without notice.