Ordering number : EN4870E

**CMOS LSI** 



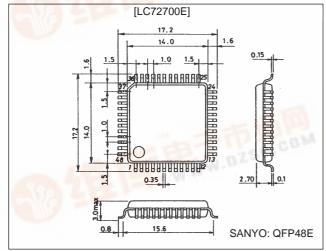
# LC72700E, LC72700G

## Mobile FM Multiplex Broadcast Receiver LSI



## Overview

The LC72700E and LC72700G are data decoder LSIs for receiving DARC<sup>TM</sup> mobile FM multiplex broadcasts. A multi-function, compact, adjustment-free system can be implemented in two chips by combining this LSI with the LV3400M band-pass filter IC, which extracts the multiplex components from a composite FM signal.


### **Functions and Features**

- Delay detection scheme using a 1T delay
- Built-in error correction function using a 2T delay
- Digital PLL clock regeneration

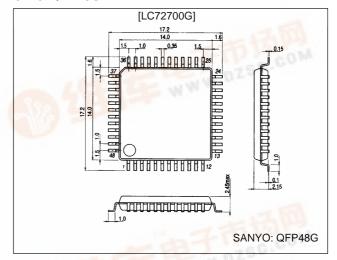
## **Package Dimensions**

unit: mm

## 3156-QFP48E



## Block and frame synchronization detection with a settable synchronization protection count


- Settable block identifier code (BIC) detection precision
- Error correction using (272,190) codes
- · Built-in frame memory for product codes
- Support for both serial and parallel data I/O
- Package

LC72700E: QFP48E LC72700G: QFP48G

- CCB is a trademark of SANYO ELECTRIC CO., LTD.
- CCB is SANYO's original bus format and all the bus addresses are controlled by SANYO.

unit: mm

#### 3229-QFP48G

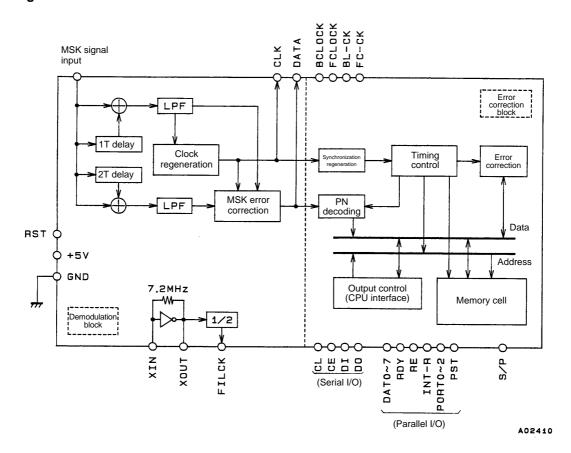


## **Specifications**

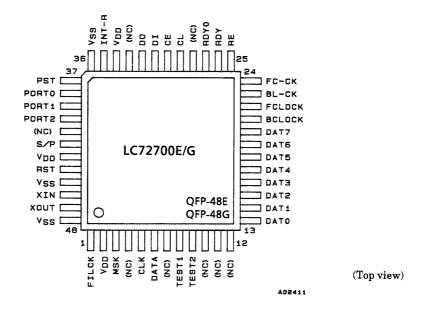
#### Absolute Maximum Ratings at $Ta = 25^{\circ}C$

| Parameter                   | Symbol              | Conditions                                | Ratings                  | Unit |
|-----------------------------|---------------------|-------------------------------------------|--------------------------|------|
| Maximum supply voltage      | V <sub>DD</sub> max | V <sub>DD</sub>                           | -0.3 to +7.0             | V    |
| Input voltage               | V <sub>IN</sub> 1   | CL, CE, and DI pins                       | -0.3 to +7.0             | V    |
| Input voltage               | V <sub>IN</sub> 2   | Input pins other than V <sub>IN</sub> 1   | $-0.3$ to $V_{DD} + 0.3$ | V    |
| Output voltage              | V <sub>OUT</sub> 1  | DO pin                                    | -0.3 to +7.0             | V    |
| Output voltage              | V <sub>OUT</sub> 2  | Output pins other than V <sub>OUT</sub> 1 | $-0.3$ to $V_{DD} + 0.3$ | V    |
| Output current              | I <sub>OUT</sub>    | BCLOCK, FCLOCK, and DO pins               | 0 to 4.0                 | mA   |
| Allowable power dissipation | Pd max              | Ta ≤ 85°C                                 | 400                      | mW   |
| Operating temperature       | Topr                |                                           | -40 to +85               | °C   |
| Storage temperature         | Tstg                |                                           | -55 to +125              | °C   |

## Allowable Operating Ranges at $Ta = -40 \ to \ +85^{\circ}C, \ V_{SS} = 0 \ V$


| Parameter                    | Symbol            | Conditions                                                  | min                 | typ | max                 | Unit  |
|------------------------------|-------------------|-------------------------------------------------------------|---------------------|-----|---------------------|-------|
| Supply voltage               | V <sub>DD</sub>   | V <sub>DD</sub>                                             | 4.5                 | 5.0 | 5.5                 | V     |
| Input high level voltage     | V <sub>IH</sub> 1 | MSK, DAT0 to 7, RE, PST, S/P, PORT0 to 2, RST, TEST1, TEST2 | 0.7 V <sub>DD</sub> |     | V <sub>DD</sub>     | ٧     |
|                              | V <sub>IH</sub> 2 | CL, CE, DI                                                  | 0.7 V <sub>DD</sub> |     | 5.5                 | V     |
| Input low level voltage      | V <sub>IL</sub> 1 | MSK, DAT0 to 7, RE, PST, S/P, PORT0 to 2, RST, TEST1, TEST2 | V <sub>SS</sub>     |     | 0.3 V <sub>DD</sub> | V     |
|                              | V <sub>IL</sub> 2 | CL, CE, DI                                                  | V <sub>SS</sub>     |     | 0.3 V <sub>DD</sub> | V     |
| Oscillator frequency         | Fosc              | *1                                                          |                     | 7.2 |                     | MHz   |
| Input sensitivity            | V <sub>XI</sub>   | XIN, sine wave, capacitive coupling                         | 400                 |     | 1500                | mVrms |
| Serial I/O*2                 |                   |                                                             | •                   |     | •                   |       |
| Clock low level time         | t <sub>CL</sub>   | CL                                                          | 0.7                 |     |                     | μs    |
| Clock high level time        | t <sub>CH</sub>   | CL                                                          | 0.7                 |     |                     | μs    |
| Data setup time              | t <sub>SU</sub>   | CL, DI                                                      | 0.7                 |     |                     | μs    |
| Data hold time               | t <sub>HD</sub>   | CL, DI                                                      | 0.7                 |     |                     | μs    |
| CE wait time                 | t <sub>EL</sub>   | CL, CE                                                      | 0.7                 |     |                     | μs    |
| CE setup time                | t <sub>ES</sub>   | CL, CE                                                      | 0.7                 |     |                     | μs    |
| CE hold time                 | t <sub>EH</sub>   | CL, CE                                                      | 0.7                 |     |                     | μs    |
| Data latch switching time    | t <sub>LC</sub>   |                                                             |                     |     | 0.7                 | μs    |
| Data output time             | t <sub>DDO</sub>  | DO, CE                                                      | 277                 |     | 555                 | ns    |
| Parallel I/O*3               |                   |                                                             | •                   |     | •                   |       |
| RE wait time                 | t <sub>RE</sub>   | RE                                                          | 1                   |     |                     | μs    |
| RDY wait time                | t <sub>DRD</sub>  | RE, RDY                                                     | 0.5                 |     | 0.8                 | μs    |
| RDY output time              | t <sub>RDY</sub>  | RDY                                                         |                     | 2.2 |                     | μs    |
| PST input time               | t <sub>PS</sub>   | PST                                                         | 0.3                 |     |                     | μs    |
| PST hold time                | t <sub>PH</sub>   | PST, DAT0 to 7, PORT0 to 2                                  | 10                  |     |                     | ns    |
| I/O direction switching time | t <sub>DIR</sub>  | PST, DAT0 to 7                                              | 0.5                 |     | 0.8                 | μs    |

Note: 1. This LSI operates at a frequency of 7.2 MHz ±250 ppm.
2. See the parallel data timing.
3. See the parallel data timing.


## **Electrical Characteristics in the Allowable Operating Ranges**

| Parameter                    | Symbol            | Conditions                                                                                  | min                   | typ                 | max | Unit |
|------------------------------|-------------------|---------------------------------------------------------------------------------------------|-----------------------|---------------------|-----|------|
|                              | V <sub>OH</sub> 1 | I <sub>O</sub> = 1 mA, FILCK, CLK, DATA                                                     | V <sub>DD</sub> – 1.0 |                     |     | V    |
| High level output voltage    | V <sub>OH</sub> 2 | I <sub>O</sub> = 2 mA, DAT0 to 7, BCLOCK, FCLOCK, BL-CK, FC-CK, INT-R, RDY, RDY0            | V <sub>DD</sub> - 0.4 |                     |     | V    |
|                              | V <sub>OL</sub> 1 | I <sub>O</sub> = 1 mA, for the V <sub>OH</sub> 1 applicable pins                            |                       |                     | 1.0 | V    |
| Low level output voltage     | V <sub>OL</sub> 2 | I <sub>O</sub> = 2 mA, for the V <sub>OH</sub> 2 applicable pins                            |                       |                     | 0.4 | V    |
|                              | V <sub>OL</sub> 3 | I <sub>O</sub> = 2 mA, DO                                                                   |                       |                     | 0.4 | V    |
| Lligh lovel input current    | I <sub>IH</sub> 1 | V <sub>IN</sub> = 5.5 V, CE, CL, DI                                                         |                       |                     | 1   | μA   |
| High level input current     | I <sub>IH</sub> 2 | V <sub>IN</sub> = V <sub>DD</sub> , input pins except I <sub>IH</sub> 1                     |                       |                     | 1   | μA   |
|                              | I <sub>IL</sub> 1 | V <sub>IN</sub> = V <sub>SS</sub> , CE, CL, DI                                              |                       |                     | -1  | μA   |
| Low level input current      | I <sub>IL</sub> 2 | V <sub>IN</sub> = V <sub>SS</sub> , inputs with pull-up resistors, RE, PST, PORT0 to 2, S/P | -100                  |                     |     | μA   |
|                              | I <sub>IL</sub> 3 | V <sub>IN</sub> = V <sub>SS</sub> , MSK, RST                                                |                       |                     | -1  | μA   |
| Output off leakage current   | I <sub>OFF</sub>  | $V_O = V_{DD}$ , DO                                                                         |                       |                     | 5   | μA   |
| Hysteresis voltage           | V <sub>HIS</sub>  | MSK, CL, CE, DI, RST                                                                        |                       | 0.1 V <sub>DD</sub> |     | V    |
| Built-in feedback resistance | Rf                | XIN, XOUT                                                                                   |                       | 1.0                 |     | ΜΩ   |
| Pull-up resistance           | Rpu               | RE, PST, PORT0 to 2, S/P                                                                    |                       | 50                  |     | kΩ   |
| Current drain                | I <sub>DD</sub>   |                                                                                             |                       | 16                  | 25  | mA   |

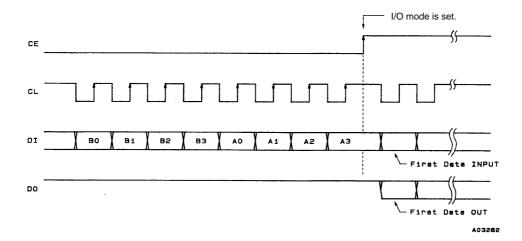
## **Block Diagram**



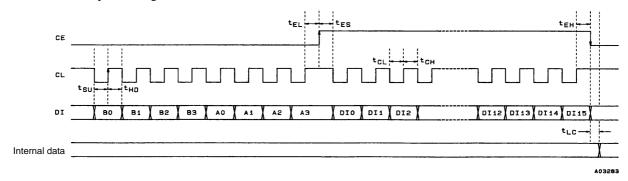
## **Pin Assignment**



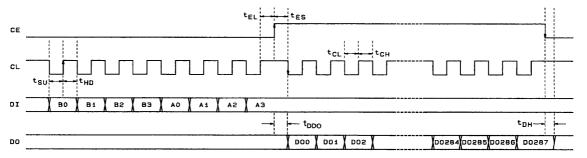
## **Pin Descriptions**


| Pin No.                          | Symbol                             | Function                                             | I/O             | I/O Circuit         |
|----------------------------------|------------------------------------|------------------------------------------------------|-----------------|---------------------|
| 3                                | MSK                                | 76 kHz MSK signal input                              |                 |                     |
| 29                               | CL                                 | CCB serial interface Clock input                     |                 |                     |
| 30                               | CE                                 | Data control input                                   |                 |                     |
| 31                               | DI                                 | Data input                                           | la mont         |                     |
| 44                               | RST                                | System reset input pin (negative logic)              | Input           |                     |
| 8                                | TEST1                              | Test pin 1 (normally connected to ground)            |                 | A02412              |
| 9                                | TEST2                              | Test pin 2 (normally connected to ground)            |                 |                     |
| 37                               | PST                                | Parallel IF mode data settings                       |                 |                     |
| 38                               | PORT0                              | Port address 0                                       |                 | <b>T</b>            |
| 39                               | PORT1                              | Port address 1                                       | Input           | \$50k₽              |
| 40                               | PORT2                              | Port address 2                                       |                 |                     |
| 42                               | S/P                                | Serial/parallel IF switch<br>(Serial mode when high) |                 | A02413              |
|                                  |                                    |                                                      | Input           |                     |
| 25                               | RE                                 | Parallel IF mode data output control signal input    |                 | <b>₹50kΩ</b> A02414 |
| 1                                | FILCK                              | Reference clock output for the LV3400M               |                 |                     |
| 5                                | CLK                                | Clock regeneration monitor output                    |                 | — <del> </del>      |
| 6                                | DATA                               | Demodulated data monitor output                      |                 | •                   |
| 21                               | BCLOCK                             | Outputs a high level during block synchronization    |                 | A02415              |
| 22                               | FCLOCK                             | Outputs a high level during frame synchronization    | Output          |                     |
| 23                               | BL-CK                              | Block start signal output                            | σαιραί          |                     |
| 24                               | FC-CK                              | Frame start signal output                            |                 |                     |
| 26                               | RDY                                | Parallel IF data output enable signal                |                 |                     |
| 27                               | RDY0                               | Parallel IF data output enable signal                |                 |                     |
| 35                               | INT-R                              | Output data external CPU interrupt signal            |                 |                     |
| 13                               | DAT0                               | Parallel IF data output pin 0                        |                 |                     |
| 14                               | DAT1                               | Parallel IF data output pin 1                        |                 |                     |
| 15                               | DAT2                               | Parallel IF data output pin 2                        |                 |                     |
| 16                               | DAT3                               | Parallel IF data output pin 3                        | I/O             |                     |
| 17                               | DAT4                               | Parallel IF data output pin 4                        |                 |                     |
| 18                               | DAT5                               | Parallel IF data output pin 5                        |                 | 7                   |
| 19                               | DAT6                               | Parallel IF data output pin 6                        |                 | A02415              |
| 20                               | DAT7                               | Parallel IF data output pin 7                        |                 |                     |
| 32                               | DO                                 | CCB serial interface data output                     | Output          | A02417              |
| 46<br>47                         | XIN<br>XOUT                        | System clock oscillator crystal connection           | Input<br>Output | A02418              |
| 2, 34, 43<br>36, 45, 48          | V <sub>DD</sub><br>V <sub>SS</sub> | Power supply (+4.5 to +5.5 V) Ground pin             |                 |                     |
|                                  |                                    |                                                      | _               |                     |
| 4, 7, 10<br>11, 12, 28<br>33, 41 | NC                                 | Not connected                                        |                 |                     |

#### Serial Data I/O Scheme


#### 1. CCB Format

The figure shows the Sanyo audio LSI serial bus format. Data is input and output over a CCB (computer control bus). This LSI uses an 8-bit address CCB format.


| I/O mode |    |    |    |    | Α  | ddress |    |    | Function                  |  |  |
|----------|----|----|----|----|----|--------|----|----|---------------------------|--|--|
| I/O mode | B0 | B1 | B2 | В3 | A0 | A1     | A2 | A3 | Function                  |  |  |
| Input    | 0  | 1  | 0  | 1  | 1  | 1      | 1  | 1  | 16-bit control data input |  |  |
| Output   | 1  | 1  | 0  | 1  | 1  | 1      | 1  | 1  | Data output               |  |  |



### 2. Serial Data Input Timing



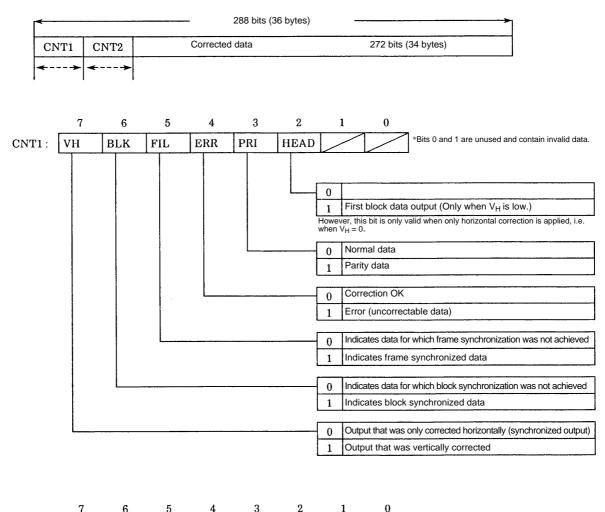
### 3. Serial Data Output Timing



A0326

#### 4. Serial Control Data Input Setting Values

The input data consists of 16 bits (DI0 to DI15) of which the upper 8 bits (DI8 to DI15) are the control address and the lower 8 bits (DI0 to DI7) are the input data.


| Register                      |      | Address |     |     | Data                |                          | Default setting |  |
|-------------------------------|------|---------|-----|-----|---------------------|--------------------------|-----------------|--|
| Register                      | DI11 | DI10    | DI9 | DI8 | j Di                | ald                      | Default setting |  |
| Allowed error count           | 0    | 0       | 0   | 0   | Upper 4 bits        | Back allowed errors      | 2               |  |
| Allowed error count           |      | 0       | 0   |     | Lower 4 bits        | Forward allowed errors   | 2               |  |
| Block error protection count  | 0    | 0       | 0   | 1   | Upper 4 bits        | Back protection count    | 1               |  |
| Block error protection count  | "    | "       | "   | '   | Lower 4 bits        | Forward protection count | 7               |  |
| Frame error protection count  | 0    | 0       | 1   | 0   | Upper 4 bits        | Back protection count    | 1               |  |
| Frame end protection count    | "    | "       | '   | "   | Lower 4 bits        | Forward protection count | 7               |  |
| Error correction initial      |      | 0       | 1   | 1   | Upper 5 bits        | _                        | _               |  |
| threshold value               | 0    | 0       | '   | '   | Lower 3 bits        | Initial threshold value  | 7               |  |
| Readout (output) block number | 0    | 1       | 0   | 0   | 0 to 189 (8 bits) 0 |                          | 0               |  |

Note: 1. The data in address bits DI12 to DI15 is ignored.

- 2. The value of the data sent to set the protection count must be one less than the desired protection count. In the default example shown above, the block forward protection count will be 8 and the frame back protection count will be 2. When the value is set to 0, the protection count will be 1. Since a protection count of 0 is meaningless the LSI ignores this value.
- 3. The initial threshold value is the initial value used when executing error correction at a variable threshold. There is no need to change this value unless some special experiment is being performed. The threshold value can be set to a value from 9 to 15 according to a three-bit field. Therefore a data value of 7 sets the threshold value to 15 and a data value of 1 sets the threshold value to 9.
- 4. The readout block number is transferred when the skip function is used.
- 5. Addresses other than those listed above (e.g. 0101) are special addresses unique to this LSI and are for test mode and other functions. These addresses should not be used.
- 6. The default values are the values loaded into internal registers when a reset signal (RST) is received. These are recommended values and do not require modification in normal operation. If the default values are used then there will be no need to implement control microprocessor software that inputs control data.

### **Structure of the Output Data**

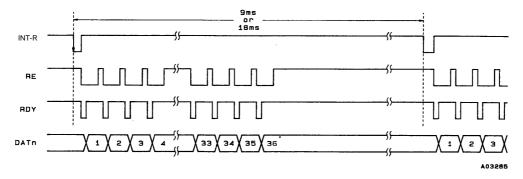
- 1. The output data consists of a total of 288 bits (36 bytes). The first two bytes are status information.
- 2. CNT1 and CNT2 are both output LSB first.
- 3. Corrected data is output in order starting with the first bit in each block.
- 4. The BIC code is not output.
- 5. These points hold for both serial and parallel mode.
- \*: The CPU can easily select data by first checking the content of the status information when data is read out. Data that is not required does not have to be read; rather, the CPU can cancel the remainder of the readout operation. (The CPU can simply ignore data until the next interrupt.)



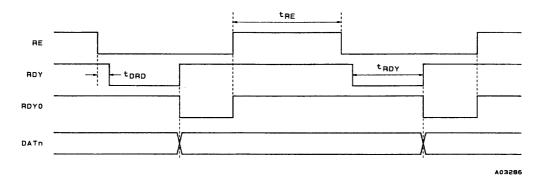
7 6 5 4 3 2 1 0
CNT2: BLN7 BLN6 BLN5 BLN4 BLN3 BLN2 BLN1 BLN0

#### Parallel Mode Data I/O Methods

Data is input and output using the parallel data interface I/O pins, INT-R (pin 35), RE (pin 25), RDY (pin 26), RDY0 (pin 27) and DATn (pins 13 to 20).


#### 1. Basic Data Output Procedure

- (1) Interrupt handling starts on the falling edge of INT-R.
- (2) Set RE low.
- (3) RDY goes low temporarily and then goes high on output ready.
- (4) After RDY goes high, read in the data from DATn.
- (5) Return RE to high.


Repeat steps (2) to (5) until 36 bytes of data have been read in.

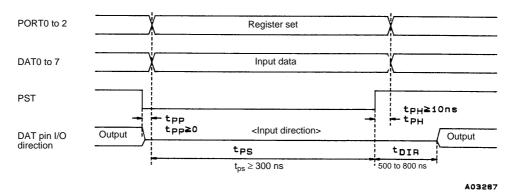
Note: The period that RDY is low is  $2.2~\mu s$  (typical). The CPU does not need to monitor RDY if it can adjust its timing. Also, RDY0 is a signal that goes low when output is ready and goes high when RE returns to high. The software logic for data acquisition can be simplified if the RDY (or RDY0) signal is input to the CPU WAIT pin.

#### 2. Parallel Data Output Timing



#### 3. Parallel Data Output Timing Stipulations




#### 4. Data Input in Parallel Mode

To store data in parallel mode, set the internal register address of the data to be stored in PORT0 to PORT2 (pins 38 to 40) and set the PST pin (pin 37) low. Then input the data to DATn (pins 13 to 20). The PORT0 to PORT2 inputs and the data to be stored are acquired by the LSI on the rising edge of the PST signal. When the PST pin is low, the DAT0 to DAT7 pins function as input pins. Note that the PST pin data store cycle must be  $1~\mu s$  or longer.

See the section on page 6 serial data I/O for notes and terminology descriptions concerning the data stored.

| PORT2 | PORT1        | PORT0 | Item                     | Se                | Set data                 |                          |   |   |   |   |   |                        |              |                       |   |
|-------|--------------|-------|--------------------------|-------------------|--------------------------|--------------------------|---|---|---|---|---|------------------------|--------------|-----------------------|---|
| 0     | 0            | 0     | Allowed error count      | Upper 4 bits      | Back allowed errors      | 2                        |   |   |   |   |   |                        |              |                       |   |
| U     | U            | 0     | Allowed error count      | Lower 4 bits      | Forward allowed errors   | 2                        |   |   |   |   |   |                        |              |                       |   |
| 0     | 0            | 4     | Block error protection   | Upper 4 bits      | Back protection count    | 1                        |   |   |   |   |   |                        |              |                       |   |
| U     | U            |       | count                    | Lower 4 bits      | Forward protection count | 7                        |   |   |   |   |   |                        |              |                       |   |
| 0     | 4            | 0     | 0                        | 0                 | 0                        | 0                        | 0 | 0 | 0 | 0 | 0 | Frame error protection | Upper 4 bits | Back protection count | 1 |
| U     | ļ            |       |                          | count             | Lower 4 bits             | Forward protection count | 7 |   |   |   |   |                        |              |                       |   |
| 0     | 1            |       | Error correction initial | Upper 4 bits      | _                        | _                        |   |   |   |   |   |                        |              |                       |   |
| U     | threshold va |       | threshold value          | Lower 3 bits      | Initial threshold value  | 7                        |   |   |   |   |   |                        |              |                       |   |
| 1     | 0            | 0     | Readout block no.        | 0 to 189 (8 bits) |                          | 0                        |   |   |   |   |   |                        |              |                       |   |

## 4. Control Data Timing in Parallel Mode



## Handling Pins for the Unused Mode when the CPU Interface is Specified

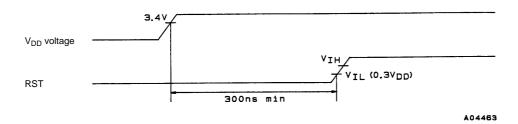
## 1. When Serial Mode is Specified

| Pin        | Pin No.    | Pin state                                 | Handling                                                     |
|------------|------------|-------------------------------------------|--------------------------------------------------------------|
| PST        | (37)       | Pull-up resistor input                    | Leave open or connect to the power-supply (V <sub>DD</sub> ) |
| PORT0 to 2 | (38 to 40) | Pull-up resistor input                    | Leave open or connect to the power-supply (V <sub>DD</sub> ) |
| DATA0 to 7 | (13 to 20) | Output direction (fixed at the low level) | Leave open                                                   |
| RDY        | (26)       | Fixed at a high-level output              | Leave open                                                   |
| RDY0       | (27)       | Fixed at a high-level output              | Leave open                                                   |
| RE         | (25)       | Pull-up resistor input                    | Leave open or connect to the power-supply (V <sub>DD</sub> ) |

### 2. When Parallel Mode is Specified

| Pin | Pin No. | Pin state                          | Handling                              |
|-----|---------|------------------------------------|---------------------------------------|
| CL  | (29)    | Input pin                          | Connect to the power supply or ground |
| CE  | (30)    | Input pin                          | Connect to the power supply or ground |
| DI  | (31)    | Input pin                          | Connect to the power supply or ground |
| DO  | (32)    | Open-drain output in the off state | Connect to ground                     |

Note:\*\* 1. The data values shown above are for the state immediately following a reset operation.


- 2. The INT-R pin (pin 35) signal is always output regardless of the mode.
- 3. Since the S/P pin (pin 42) has a built-in pull-up resistor, serial mode will be selected if it is left open.

## **Circuit Operation at Reset**

#### 1. Reset Signal

The reset operation is executed by holding the RST pin input level under  $V_{IL}$  for 300 ns or longer when the power-supply voltage ( $V_{DD}$ ) is over 3.4 volts. (See the figure.)

The reset operation is necessary to run this LSI.



#### 2. Pin Outputs during a Reset

Low-level outputs: ...FILCK (1), CLK (5), DAT0 (13) to DAT7 (20), BCLOCK (21), FCLOCK (22), BL-CK (23),

FC-CK (24), D0 (32)

High-level outputs: ...RDY (26), RDYO (27), INT-R (35), XOUT (47)

Note: In serial mode, the DAT0 to DAT7 pins are held at the low level at all times. In parallel mode, these pins output low levels during a reset.

## 3. Reset Operating Ranges

The output pins are stipulated to operate as described in item 2 above according to a reset signal. All the LSI internal registers go the reset state. While the shift registers for 1T and 2T delay also go to the reset state, memory cells are not affected. However, since the memory refresh operation is stopped, data cannot be maintained. The crystal oscillator circuit is not stopped.

#### 4. Data Input Following a Reset

The serial or the parallel input control circuit becomes capable of operating (accepting data) one clock cycle (about 278 ns at 3.6 MHz: i.e., the LSI's main clock) after the reset completes.

#### Output Data (basic operation concerning error correction)

Error correction using (272, 190) codes is performed for every block (272 bits) of received data. Data is output immediately after error correction. This is referred to as horizontal correction. If the data could not be corrected by horizontal correction, correction is performed in field units using product codes. This is referred to as vertical correction.

Since the horizontal correction output is output for each received block, it is an effective scheme for applications in which the received data is desired quickly, such as in synchronous broadcasting. Vertical correction is only performed when frame synchronization is achieved. Also, vertical correction is not performed when all the packet (block) data has been completely corrected by horizontal correction. Since vertical correction is performed after one frame (272 blocks) of data has been accumulated, normally about 5 seconds is required from data reception to the output of corrected data.

When post-horizontal correction data is output, all data blocks, including the parity block, are output. Post-vertical correction output data does not include parity block data, but rather only the data in the data blocks (190 blocks of data) is output. Note that when either frame synchronization is not achieved or horizontal correction completes and vertical correction is not performed, the data that is output could be called post-vertical correction data. However, the content of that data will be identical to post-horizontal correction data.

#### Interface: Basic Control Items

after the stipulated period has elapsed.

To reduce internal memory requirements this LSI limits the data buffer (RAM) area to the minimum required. Since data received by the LSI is written to the buffer with no gaps, post-correction data that should be read may be overwritten by new data if there are any delays in data readout.

The output timings for vertically and horizontally corrected data for this LSI are stipulated as follows.

- 1. When the output data is ready, the LSI sets the DO pin low and drops the INT-R pin to low.
- 2. In data output, there are periods during which only horizontal data can be read out and periods during which horizontal and vertical data can be read out time-division multiplexed.
- 3. The data transfer must be completed within 9 ms after the DO pin goes low. When only horizontal data is output, data can be transferred during a period of about 18 ms.

  Even if the controlling CPU is still reading out data, the data in the output buffer can be overwritten by the next data
- 4. The amount of data that can be read in a single transfer request (INT-R) for both vertical and horizontal data is limited to only one block of data.
  - In principle, vertical data is read out in order starting with block number 1 after vertical correction has completed. Note that the parity block data is not output.

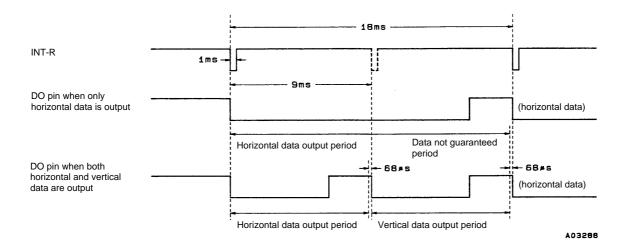



Figure 1 External Interface Basic Timing

### Data Output Timing (as related to reception data)

Figure 2 shows the timing relationships between the reception data block start signal (BL-CK: pin 23) and the interrupt control signal (INT-R: pin 25). However, this figure ignores the delay component with respect to the actual received signal due to the demodulation operation in MSK demodulation blocks. Block synchronization is established by recognizing BIC codes. As shown in Figure 2, the data from the nth packet (block) is available for output during reception of the next packet, i.e. packet n+1. When using this LSI, be sure to keep in mind the fact that the block start signal (BL-CK) output by the LSI is output after the BIC code in the actual reception data has been received.

Figure 3 shows the output timing for vertically corrected data. Vertical correction is used when a complete frame of data is stored in memory, frame synchronization is established, and all the data packets could not be corrected by horizontal correction. The frame start defines the timing for the start of vertical correction execution. Horizontal correction is performed for each packet during reception of packets (blocks) 1 to 28 in the nth frame, and data is passed to the CPU interface. Vertical correction is performed for the previous frame (frame n-1) data during the idle periods in the reception process. (However, note that frame and block synchronization must not be lost.)

Vertically corrected data is output at the rate of one block for every block received in order starting with the 29th packet (block). A total of 190 blocks of data are output. Of the data in the FM multiplex broadcast data structure, only the data blocks are output, and the last block, the 190th block is output while the 218th block is being received.

### DO (pin 32) Operation (only in serial mode)

Figure 4 shows the changes in the DO signal when data is not output by the CPU. When the output data is ready, DO goes low and returns to the high level about 6 ms later. The data becomes invalid about 9 ms after either DO or INT-R goes low, and data can still be read even after DO goes high. (Horizontal data (only horizontal data) can be read out for a period of about 18 ms.)

The reason DO goes high after 6 ms is so that the CPU interface can handle applications where the CPU does not use the interrupt port.

When DO is low, there is guaranteed to be a window of at least 3 ms during which data can be transferred. (This eases software operation.) INT-R can be used as an edge trigger interrupt. Note that the 68 µs period prior to the leading edge of INT-R is the LSI's output buffer write period, and that data read during this period is not guaranteed.

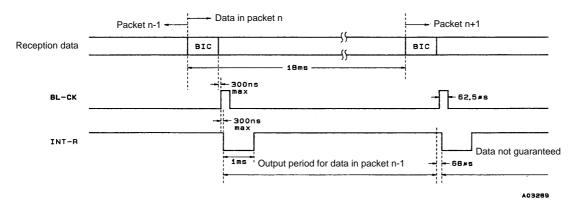



Figure 2 Reception Data, Block Synchronization, and Data Output Timing

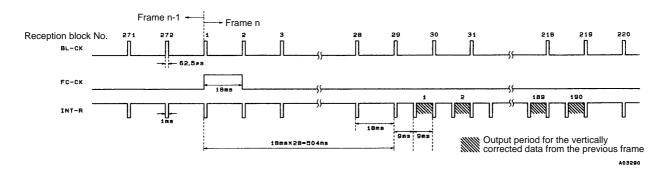



Figure 3 Vertically Corrected Data Output Timing

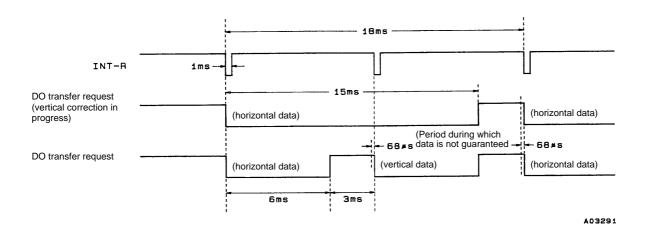



Figure 4 DO Signal Changes when Data is not Output (serial mode)

#### **Skip Function**

For post-vertical correction data, only the data block data (190 blocks) can be output.

The skip function jumps over the output data block sequence and allows required data blocks to be output quickly.

However, note that the number specified must be for a block that is ahead of the block currently being read out. If a previous block number is specified, the post-vertical correction output data for that frame cannot be guaranteed. Skip operation is valid during the next post-vertical correction data output after block number specification.

If the skip address is transferred after vertical data output is ready, such as at point B in Figure 5, output data is not skipped at that point, but rather the data skip is performed at the point C, which is the output time for the next vertical data.

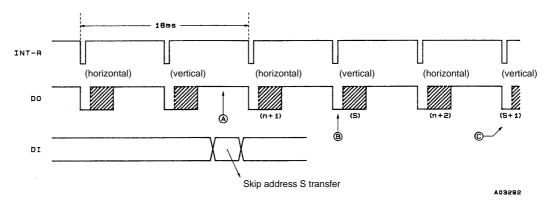



Figure 5 Address Skip

The DARC (Data Radio Channel) FM multiplex broadcast technology was developed by NHK (Japan Broadcasting Corporation). DARC is a registered trademark of NHK Engineering Service (NHK-ES).

A separate contract with NHK-ES is required to produce and market electronic equipment that uses the DARC technology. Note that electronic equipment that uses the DARC technology may display the logo shown elsewhere on this page.



- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
  - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
  - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of July, 1997. Specifications and information herein are subject to change without notice.