

Overview

The LC7455A／M extracts the closed caption signal superimposed on a video signal during the vertical return period and，under the control of a clock signal provided by the decoder IC，transfers that signal to the IC（usually a microcontroller）that decodes the closed caption data．The LC7455A／M supports four operating modes．Modes 1 and 2 can be used for XDS．In these modes，the LC7455A／M， in combination with the decoder IC（microcontroller）， extracts the caption signal superimposed on field 2 and uses it for NTSC VCR functions such as the automatic time and date setting function．In modes 3 and 4，the LC7455A／M，in combination with the decoder IC （microcontroller），extracts the caption signal superimposed on fields 1 and 2 and uses it for NTSC TV applications（mode 3）or PAL TV applications（mode 4）．

Functions

－Low power dissipation achieved by fabrication in a CMOS process．
－Stable caption signal extraction achieved by a built－in peak hold circuit and the use of digital technology．
－Operating supply voltage： $5 \mathrm{~V} \pm 10 \%$
－Package LC7455A：16－pin DIP
LC7455M：18－pin MFP

Package Dimensions

unit：mm
3006B－DIP16

unit：mm
3095－MFP18

Pin Assignments

Pin Functions

Pin	Pin No.		Pin function			
	DIP16	MFP18	Mode 1	Mode2	Mode3	Mode4
$\mathrm{V}_{\text {SS }} 1$	1	1	Ground			
TEST	2	2	Test pin. Must be left open during normal operation.			
LN21	3	3	Line 21 H pulse output (even field)		Line 21 H pulse output (both fields)	Line 22H pulse output (both fields)
O/E/CFOUT	4	4	Field discrimination pulse output	Ceramic oscillator output	Field discrimination pulse output	
$\overline{\text { HS/CFIN }}$	5	5	Sync separator Hsync pulse output	Ceramic oscillator input	$\overline{\text { Hsync }}$ pulse input	
CPDT	6	6	Caption data output (n-channel open-drain output)			
SCKIN	7	7	Caption data transfer clock input			
$\overline{\mathrm{CE}}$	8	8	Chip select input			
$V_{D D} 1$	9	11	Power supply			
MODO	10	12	Leave open	Short to the power supply	Leave open	Short to the power supply
CVIN	11	13	Composite video input			
VCOR	12	14	Connection for an external resistor to control the built-in VCO oscillator frequency			
MOD1	13	15	Leave open		Short to the power supply	
$V_{\text {DD }}$ 2	14	16	Power supply			
$\mathrm{V}_{S S}{ }^{2}$	15	17	Ground			
CP	16	18	Connection for the filter used by the built-in PLL			

Note: $\mathrm{V}_{\mathrm{DD}} 1$ and $\mathrm{V}_{\mathrm{SS}} 1$ are the power supply for the digital block, and $\mathrm{V}_{\mathrm{DD}} 2$ and $\mathrm{V}_{\mathrm{SS}} 2$ are the power supply for the analog block. Use a circuit similar to the one shown below to minimize mutual interference due to noise from these blocks.

System Block Diagram

Operation in the Different Modes

Pin		Mode	Application equipment	Operation
MOD1	MODO			
Open	Open	Mode 1	VCR	Even field line 21 data extraction The internal PLL is operated with the horizontal synchronizing signal separated from the composite video signal as the reference.
Open	$V_{D D}$	Mode 2	VCR	Even field line 21 data extraction An external 508 kHz ceramic oscillator is used, and the internal PLL is operated with that oscillator output divided by 32 as the reference.
$V_{D D}$	Open	Mode 3	NTSC-TV	Odd and even field line 21 data extraction The internal PLL is operated with the $\overline{\text { Hsync }}$ signal applied from fly back as the reference.
$V_{D D}$	$V_{D D}$	Mode 4	PAL-TV	- Odd and even field line 22 data extraction The internal PLL is operated with the $\overline{\mathrm{Hsync}}$ signal applied from the fly back circuit as the reference.

Note: The data extraction operations in modes 1 and 2 are identical. However, while mode 1 can operate without problem for normal "on air" signals, it may be difficult for the PLL to lock with signals such as scrambled CATV signals.

Specifications

Absolute Maximum Ratings at $\mathbf{T a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V_{DD} max	$\mathrm{V}_{\mathrm{DD}} 1, \mathrm{~V}_{\mathrm{DD}} 2: \mathrm{V}_{\mathrm{DD}} 1=\mathrm{V}_{\mathrm{DD}}{ }^{2}$	-0.3 to +7.0	V
Input voltage	V_{1}	$\overline{H S} / \mathrm{CFIN}, \mathrm{CVIN}, \mathrm{SCKIN}, \overline{\mathrm{CE}}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output voltage	V_{O}	LN21, CPDT, O/E/CFOUT, $\overline{\text { HS} / C F I N ~}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Allowable power dissipation	Pd max	LC7455A	300	mW
		LC7455M	150	mW
Operating temperature	Topr		-30 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$

Note: $\mathrm{V}_{\mathrm{SS}} 1$ and $\mathrm{V}_{\mathrm{SS}} 2$ must be at the same potential.
$V_{D D} 1$ and $V_{D D} 2$ must be at the same potential.
Allowable Operating Ranges at $\mathbf{T a}=\mathbf{- 3 0}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=\mathbf{0} \mathrm{V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Operating supply voltage	$V_{D D}$	$\mathrm{V}_{\mathrm{DD}} 1, \mathrm{~V}_{\mathrm{DD}} 2: \mathrm{V}_{\mathrm{DD}} 1=\mathrm{V}_{\mathrm{DD}} 2$	4.5		5.5	V
Input high-level voltage	V_{IH}	$\overline{\mathrm{HS}} / \mathrm{CFIN}, \mathrm{SCKIN}, \overline{\mathrm{CE}}$; $\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	$0.75 \mathrm{~V}_{\mathrm{DD}}$		$V_{D D}$	V
Input low-level voltage	$\mathrm{V}_{\text {IL }}$	$\overline{\mathrm{HS}} / \mathrm{CFIN}, \mathrm{SCKIN}, \overline{\mathrm{CE}} ;$ $\mathrm{V}_{\mathrm{DD}}=4.5 \text { to } 5.5 \mathrm{~V}$	$\mathrm{V}_{\text {SS }}$		$0.25 \mathrm{~V}_{\mathrm{DD}}$	V
CVIN input amplitude	CVSYNC	$\begin{aligned} & \text { CVIN : SYNC-WHITE }=1.0 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{DD}}=4.5 \text { to } 5.5 \mathrm{~V} \end{aligned}$	1Vp-p-3dB	1Vp-p	$1 \mathrm{~V} p-\mathrm{p}+3 \mathrm{~dB}$	V
$\overline{\mathrm{HS}}$ input frequency range	f_{H}	$\begin{aligned} & \hline \overline{\mathrm{HS}} / \mathrm{CFIN}: \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V} \\ & \text { For mode } 3 \\ & \text { For mode } 4 \end{aligned}$	$\begin{aligned} & 15.23 \\ & 15.13 \end{aligned}$	$\begin{aligned} & 15.73 \\ & 15.63 \end{aligned}$	$\begin{aligned} & 16.23 \\ & 16.13 \end{aligned}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
Oscillator frequency range*1	FmCF	HS/CFIN, O/E/CFOUT; For mode 2, see Figure 1. $\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	503	508	513	kHz
Oscillator stabilization time*2	tmsCF	HS/CFIN, O/E/CFOUT; For mode 2, see Figure 2. $V_{D D}=4.5$ to 5.5 V		0.5	5	ms

Note: 1. See Table 1 for more information on the oscillator frequency.
2. The oscillator stabilization time is the time required until the oscillator is stable after the power-supply voltage is applied. See figure 2.

Electrical Characteristics at $\mathbf{T a}=\mathbf{- 3 0}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\text {SS }}=0 \mathrm{~V}$.

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Input high-level current	$\mathrm{I}_{\mathbf{H}}$	$\overline{\mathrm{HS}} / \mathrm{CFIN}, \mathrm{SCKIN}, \overline{\mathrm{CE}}: \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$; $V_{D D}=4.5$ to 5.5 V			1	$\mu \mathrm{A}$
Input low-level current	IIL	$\overline{\mathrm{HS}} / \mathrm{CFIN}$, SCKIN, $\overline{\mathrm{CE}}: \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$; $\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	-1			$\mu \mathrm{A}$
Output high-level voltage	V_{OH}	LN21, O/E/CFOUT, $\overline{\text { HS } / C F I N ; ~}$ $\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	$V_{D D}-1.2$			V
Output low-level voltage	Vol	LN21, CPDT, O/E/CFOUT, HS/CFIN : $\mathrm{l}_{\mathrm{OL}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V			1	V
Input clamping voltage	$\mathrm{V}_{\text {CLMP }}$	CVIN ; V ${ }_{\text {DD }}=5.0 \mathrm{~V}$	2.3	2.5	2.7	V
Input clamping current	$I_{\text {IC }}$	CVIN : CVIN $=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	5	10	18	$\mu \mathrm{A}$
Output clamping current	loc	CVIN : CVIN $=2 \mathrm{~V}$; $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	-120	-70	-30	$\mu \mathrm{A}$
Current drain	IDD	$\mathrm{V}_{\mathrm{DD}} 1, \mathrm{~V}_{\mathrm{DD}}$; $\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V		6	15	mA

Serial Output Characteristics at Ta $=-30$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=4.5$ to 5.5 V

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
[Serial clock]						
Input clock period	tckcy	SCKIN : See Figure 3.	1			$\mu \mathrm{s}$
Input clock low-level pulse width	$\mathrm{t}_{\text {CKL }}$	SCKIN : See Figure 3.	0.5			$\mu \mathrm{s}$
Input clock high-level pulse width	$\mathrm{t}_{\text {CKH }}$	SCKIN : See Figure 3.	0.5			$\mu \mathrm{s}$
Setup time	tick	SCKIN : Stipulated with respect to the falling edge of $\overline{\mathrm{CE}}$.	1			$\mu \mathrm{s}$
[Serial output]						
Output delay time	tcko	Stipulated with respect to the falling edge of SCKIN. A $1-\mathrm{k} \Omega$ external pull-up resistor is connected. See Figure 3.			0.5	$\mu \mathrm{s}$

Table 1 Ceramic Oscillator Guaranteed Constants

Oscillator type	Manufacturer	Oscillator element	C1	C2
$508-\mathrm{kHz}$ ceramic oscillator	Murata Mfg. Co., Ltd.	CSB 508E	150 pF	150 pF

Note: Capacitors with K tolerance ($\pm 10 \%$) and SL characteristics must be used for C1 and C2.
Since this circuit is influenced by the length of the circuit pattern, components related to oscillator functioning must be mounted as close together as possible so that pattern lines do not become longer than is absolutely necessary.
The characteristics are not guaranteed if an oscillator element other than the one listed above is used.

Figure 1 Ceramic Oscillator

Figure 2 Oscillator Stabilization Time

$0 / \bar{E}$ and LN21 Output Timing (Modes 1, 2, and 3)

Notes: O / \bar{E} is output in modes 1 and 3 . In mode 2 it functions as the ceramic oscillator output pin.
O/E and LN21 Output Timing (Mode 4)

A07344
Caption Data Transfer from the LC7455A/M to the Decoder IC (microcontroller): Method 1
(This is the basic technique.)

Notes: Applications that extract closed caption text data in mode 3 (NTSC TV) or mode 4 (PAL TV) must check the level of the O/E/CFOUT pin when an
LN21 falling edge is detected to determine whether odd field or even field data is being acquired.
Caption Data Transfer from the LC7455A/M to the Decoder IC (microcontroller): Method 2
(For applications that cannot provide an input port on the decoder IC (microcontroller) to detect LN21 falling edges.)

In modes 1 and 2, since data is output to the output buffer once every frame (in the even field), the decoder IC (microcontroller) must perform a transfer control operation at least twice every frame (about 32 ms).
 transferred to the output buffer.
 This transfer technique (method 2) cannot be used in modes 3 and 4 .

Sample Application Circuits (mode 1)

MFP18

DIP16

Sample Application Circuits (mode 2)

MFP18

A07349

DIP16

Sample Application Circuits (mode 3)

MFP18

DIP16

Sample Application Circuits (mode 4)

MFP18

A07353
DIP16

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
(1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
(2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of December, 1997. Specifications and information herein are subject to change without notice.

