查询LC83025供应商

CMOS LSI

LC83025E

Flexible input mixing

The LC83025E supports hybrid mixing of digital and analog left and right channel song inputs, and thus can handle a wide range of disk processing configurations.


Digital Signal Processor for Karaoke Products

- Audio inputs and outputs
 - Inputs: Digital - One system (stereo) A/D converter - Three channels
 - Outputs: Digital One system (stereo) D/A converter - Two channels
 - A/D converter Second order $\Delta \Sigma$ modulation - Three channels
 - D/A converter 4× oversampling digital filters plus second order noise shaper
 - plus 5-bit PWM system Two channels
- Master clock: 768 fs
- External memory: Up to two 256K ($64K \times 4$ -bit) DRAMs can be used
- Microcontroller input: Synchronous 8-bit serial data NW.DZSC.CI
- Supply voltage: 5 V single-voltage
- Package: **OFP80E**

Package Dimensions

unit: mm

3174-QFP80E

Overview

The LC83025E is a special-purpose karaoke DSP that implements the signal processing required by karaoke systems, including pitch shift, microphone echo, voice muting and simple surround, with only a single 256Kb external DRAM. Since the LC83025E includes built-in A/D and D/A converters, it can also handle analog inputs and outputs in addition to digital inputs and outputs. The LC83025E uses serial transfer of coefficient data from a microcontroller to handle changes in functions and characteristics required for each application.

WWW.DZSC.CO

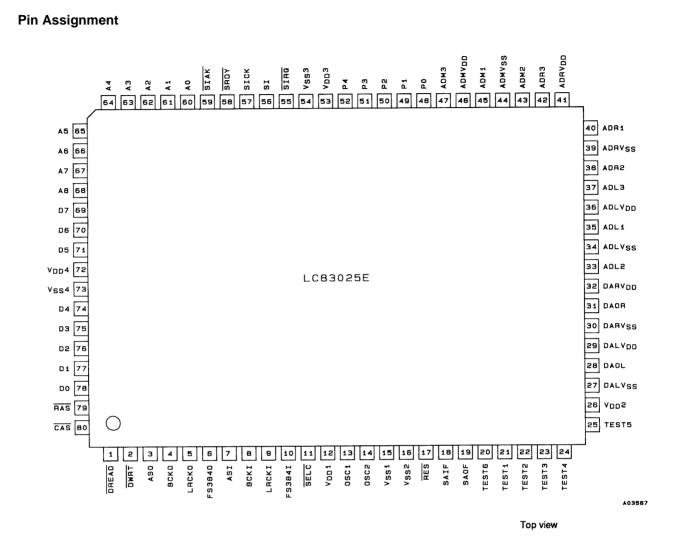
Features

- Applications
 - Pitch shift

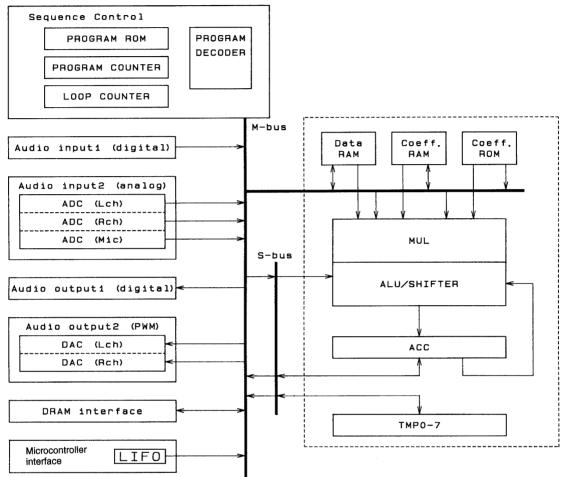
The LC83025E can shift the music pitch or the microphone pitch by ± 15 steps in 1/4 interval steps, or ± 1 octave in scale tone steps according to command data sent from the microcontroller. Furthermore, the pitch can be changed up to ± 1 octave in arbitrary steps by setting internal coefficients.

Microphone echo

The LC83025E implements echo processing for the signal input from the microphone A/D converter. The amount of echo, the delay time and other parameters can be changed by setting coefficients.

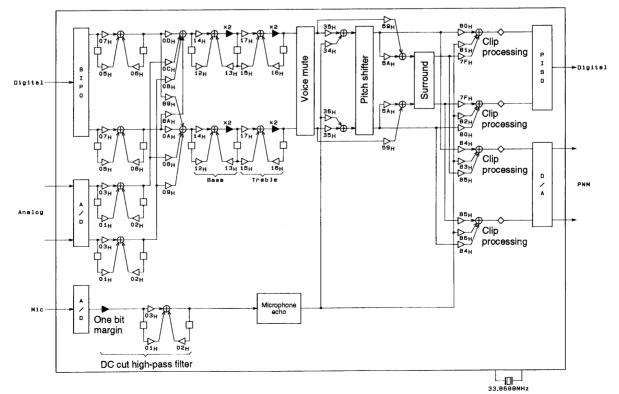

Voice mute

The LC83025E implements processing that removes monaural signal components included in the music signal. This allows CDs with vocals to be used as karaoke CDs. Command data is used to turn the voice mute function on or off.


Simple surround

The LC83025E implements a simple surround function by adding delayed components to the music signal. The LC83025E includes six sets of simple surround coefficients as built-in preset data. These values can be switched by sending command data. Applications can implement their own original surround effects by setting the coefficients. However, the algorithm itself is fixed.

SANYO Electric Co., Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN



Block Diagram

A03568

Signal Flow Overview

A03569

Pin Functions

Pin No.	Symbol	I/O	Function
[Control pir	is]		
13	OSC1	1	Crystal oscillator connection (768 fs)
14	OSC2	0	Crystal oscillator connection (768 fs)
10	FS384I	I	384 fs input (Apply a clock that is equal to the OSC1/OSC2 768 fs clock divided by 2.)
11	SELC	I	Audio clock source switching (High: Fixes FS384I as the clock)
18	SAIF	1	Digital audio input mode switching (Low: backward packed, High: forward packed)
19	SAOF	1	Digital audio output mode switching (Low: 48 fs, High: 64 fs)
17	RES	1	Reset
25 to 21	TEST5 to TEST1	I	Test (Must be tied to ground in normal operation.)
20	TEST6	0	Test (Must be left open in normal operation.)
48	P0	I	Coefficient transfer mode switching
50, 49	P2, P1	I	Initial operating mode setting (This pin should be held high in normal operation.)
51	P3	0	Microphone signal present (low output) or absent (high output) indication output
52	P4	0	Music signal present (low output) or absent (high output) indication output
[External m	emory interface]		
79	RAS	0	RAS signal output
80	CAS	0	CAS signal output
1	DREAD	0	External memory read signal output
2	DWRT	0	External memory write signal output
68 to 60	A8 to A0	0	Address outputs
69 to 71,			
74 to 78	D7 to D0	1/0	Data I/O (Normally, only D3 to D0 are used.)
[Audio inter	face]		
9	LRCKI	I	ASI L/R clock input (1 fs)
5	LRCKO	0	ASO L/R clock output (1 fs)
8	BCKI	I	ASI bit clock input (32 fs or higher)
4	BCKO	0	ASO bit clock output (48 fs or 64 fs)
6	FS384O	0	ASO 384 fs output
7	ASI	I	Digital audio data input (MSB first, 16 bits)
3	ASO	0	Digital audio data output (MSB first, backward packed, 16 bits)
35	ADL1	I	A/D converter input (left channel)
33	ADL2	0	A/D converter output (left channel)
37	ADL3	0	A/D converter output (left channel)
40	ADR1	1	A/D converter input (right channel)
38	ADR2	0	A/D converter output (right channel)
42	ADR3	0	A/D converter output (right channel)
45	ADM1		A/D converter input (microphone)
43	ADM2	0	A/D converter output (microphone)
47	ADM3	0	A/D converter output (microphone)
28	DAOL	0	D/A converter output (left channel)
31	DAOR	0	D/A converter output (right channel)
	oller interface]	Ū	
55	SIRQ	1	Serial input request signal input
55 59	SIAK	0	Output indicating serial input execution in progress
59 56	SIAK		Serial data input from the control microcontroller (8-bit serial data)
56	SICK		
	SRDY	1	SI transfer clock input
58	SKUT		Ready signal input from the control microcontroller that indicates that serial data input has completed

Continued from preceding page.

Pin No.	Symbol	I/O	Function							
[Power su	ipply pins]									
12, 26, 53, 72	V _{DD}	-	V _{DD} for the digital block (Connect to +5 V.) (Keep connections as short as possible so that potential d	lifferences between the V _{DD} pins do not occur.)						
15, 16, 54, 73	V _{SS}	-	V _{SS} for the digital block (Connect to ground.) (Keep connections as short as possible so that potential d	or the digital block (Connect to ground.) o connections as short as possible so that potential differences between the V _{SS} pins do not occur.)						
36	ADLV _{DD}	_	A/D converter V _{DD} (left channel) (Connect to +5 V.)	Design the application wiring as						
41	ADRV _{DD}	—	A/D converter V _{DD} (right channel) (Connect to +5 V.)	Design the application wiring so that potential differences do not						
46	ADMV _{DD}	—	A/D converter V _{DD} (microphone) (Connect to +5 V.)	occur between the analog V _{DD}						
29	DALV _{DD}	—	D/A converter V _{DD} (left channel) (Connect to +5 V.)	pins and between the digital V _{DD} group and the analog V _{DD} group.						
32	DARV _{DD}	—	D/A converter V _{DD} (right channel) (Connect to +5 V.)	- group and the analog v _{DD} group.						
34	ADLV _{SS}	—	A/D converter V_{SS} (left channel) (Connect to ground.)	Design the application wiring as						
39	ADRV _{SS}	—	A/D converter V_{SS} (right channel) (Connect to ground.)	Design the application wiring so that potential differences do not						
44	ADMV _{SS}	_	A/D converter V_{SS} (microphone) (Connect to ground.)	occur between the analog V_{SS}						
27	DALV _{SS}	—	D/A converter V_{SS} (left channel) (Connect to ground.)	pins and between the digital V _{SS}						
30	DARV _{SS}	_	D/A converter V_{SS} (right channel) (Connect to ground.)	group and the analog V _{SS} group.						

Pin Circuits

Specification	Circuit	Pins				
TTL output		ASO, LRCKO, BCKO, RAS, CAS, DREAD, DWRT, FS384O, A0 to A8				
CMOS intermediate current output	Output data	P3, P4, SIAK, TEST6				
Analog output	Output data	DAOL, DAOR, ADL2, ADL3, ADM2, ADM3, ADR2, ADR3				
Schmitt input	Input data	SI, SICK, $\overline{\text{SIRQ}}$, $\overline{\text{SRDY}}$, (OSC1)				
Low Schmitt input	A03572	FS384I, BCKI, ASI, LRCKI				
Normal input	Input data	TEST1 to TEST5				
Input with built-in pull-up resistor	Input data	RES				
Input with built-in pull-down resistor	Input data	SELC, SAIF, SAOF				
CMOS intermediate current output Low Schmitt input	Input data I/O control I/O control A03576	D0 to D7				
N-channel open drain intermediate current output Normal input	Input data Test output data Trif during normal operation A03577	P0 to P2				
Analog input	A03573	ADL1, ADR1, ADM1				

Specifications

Absolute Maximum Ratings at Ta = 25° C, V_{SS} = 0 V

Parameter	Symbol	Conditions	Ratings	Unit	Note
Maximum supply voltage	V _{DD} max	V _{DD} max		V	
Output voltage	V _O 1	OSC2 output	Allowed up to the oscillator voltage.	V	
	V _O 2	Pins other than OSC2	-0.3 to V _{DD} + 0.3	V	
Input voltage	V _{IN}		-0.3 to V _{DD} + 0.3	V	
Peak output current	I _{OP} 1	Audio interface, external RAM interface	-2 to +4	mA	1
reak output current	I _{OP} 2	Microcontroller interface, P3, P4	-2 to +10	mA	2
	I _{OA} 1	Audio interface, external RAM interface: per pin	-2 to +4	mA	1
	I _{OA} 2	Microcontroller interface, P3, P4: per pin	-2 to +10	mA	2
Average output current	Σl _{OA} 1	Total for FS384O, LRCKO, BCKO, and ASO	-10 to +10	mA	
Average output current	Σl _{OA} 2	Total for DWRT, DREAD, RAS, CAS, A3 to A8 and D0 to D7	-30 to +30	mA	
	ΣI _{OA} 3	Total for A0 to A2, SIAK, P3 and P4	-10 to +10	mA	
Allowable power dissipation	Pd max	Ta = -30 to +70°C	700	mW	
Operating temperature	Topr		-30 to +70	°C	
Storage temperature	Tstg		-40 to +125	°C	

Allowable Operating Ranges

at Ta = -30 to +70°C, all V_{DD} = 4.75 to 5.25 V, all V_{SS} = 0 V unless otherwise specified

Parameter	Symbol	Conditions	min	typ	max	Unit	Note
Operating supply voltage	V _{DD}		4.75		5.25	V	
	V _{IH} 1	Audio interface, external RAM interface	2.4			V	4
Input high level voltage	V _{IH} 2	P0 to P2, SELC, SAIF, SAOF, TEST1 to TEST5	0.7 V _{DD}			V	5
	V _{IH} 3	RES, OSC1, microcontroller interface	0.75 V _{DD}			V	6
	V _{IL} 1	Audio interface, external RAM interface			0.8	V	4
Input low level voltage	V _{IL} 2	P0 to P2, SELC, SAIF, SAOF, TEST1 to TEST5			0.3 V _{DD}	V	5
	V _{IL} 3	RES, OSC1, microcontroller interface			0.25 V _{DD}	V	6
Instruction cycle time	t _{CYC}		58		59.11	ns	
[External Clock Input Conditions]							
Frequency	f _{EXT}		16.85		17.01	MHz	
Dulas width	t _{EXTH}	Related to the FS384I pin. Shown in Figure 1.	23			ns	
Pulse width	t _{EXTL}	max: 44.1 kHz \times 384 \times 1.005	23			ns	
Rise time	t _{EXTR}	min: 44.1 kHz × 384 × 0.995			9	ns	
Fall time	t _{EXTF}				9	ns	
[Self-Excitation Oscillation Condit	ions]						
Oscillator frequency	fosc	OSC1 and OSC2: shown in Figure 2. 44.1 kHz × 768 × ± 0.1%	33.84		33.90	MHz	
Oscillator stabilization period	foscs	Shown in Figure 3.			100	ms	
[Audio Data Input Conditions]							
Transfer bit clock period	t _{BCYC}		354			ns	
Transfer bit clock pulse width	t _{BCW}		100			ns	
Data setup time	t _S	Related to the BCKI and ASI pins. Shown in Figure 4.	70			ns	
Data hold time	t _H	1	70			ns	
[Serial Input Clock Conditions]							-
Serial clock period	t _{SCYC}		480			ns	
Serial clock pulse width	t _{SCW}		200			ns	
Data setup time	t _{SS}	Related to the microcontroller interface. Shown in	70			ns	
Data hold time	t _{SH}	Figure 5. (Related to the SICK, SI and $\overline{\text{SRDY}}$ pins.)	70			ns	
SRDY hold time	t _{SYH}	1	200			ns	
SRDY pulse width	t _{SYW}	1	200			ns	
[DRAM Input Conditions]		1					1
Input data setup time	t _{DSI}	Related to external DRAM data input. Shown in Figure 6.	20			ns	
Input data hold time	t _{DHI}	(Related to the \overline{CAS} and D0 to D7 pins.)				ns	1

Electrical Characteristics 1 at Ta = -30 to +70°C, all V_{DD} = 4.75 to 5.25 V, all V_{SS} = 0 V unless otherwise specified

Parameter	Symbol	Conditions	min	typ	max	Unit	Note
	I _{IL} 1	$\overline{\text{RES}}$, $V_{IN} = V_{SS}$ (Input pins with built-in pull-up resistor)	-250	-100		μA	8
Input low level current	I _{IL} 2	P0 to P2, $V_{IN} = V_{SS}$	-10			μA	
	I _{IL} 3	Other input-only pins	-10			μA	
	I _{IH} 1	SELC, SAIF, SAOF, V _{IN} = V _{DD} (Input pins with built-in pull-down resistor)		100	250	μA	8
Input high level current	I _{IH} 2	P0 to P2, $V_{IN} = V_{DD}$ (n-channel transistor: off)			10	μA	
	I _{IH} 3	Other input-only pins			10	μA	
0	V _{OH} 1	I _{OH} = -0.4 mA	4.0	4.98		V	1, 8
Output high level voltage	V _{OH} 2	I _{OH} = -50 μA	V _{DD} – 1.2	4.997		V	2, 3, 8
	V _{OL} 1	$I_{OL} = 2 \text{ mA}$		0.065	0.4	V	1, 8
Output low level voltage	V _{OL} 2	I _{OL} = 10 mA		0.32	1.5	V	2, 3, 8
Output off leakage current	I _{OFF}	$V_{O} = V_{SS}, V_{DD}$	-40		+40	μA	
I/O capacitance	C _{IO}				10	pF	1
[Audio Data Output Timing]		1	ı				
Output data hold time	t _{ОН}		-30			ns	7
Output data delay time	t _{OD}	BCKO and ASO: shown in Figure 7.			50	ns	7
[External DRAM Access Timing]	0.5	I	11			1	1
RAS high pulse width	t _{RP}		80			ns	7
RAS low pulse width	t _{RAS}		700			ns	7
CAS high pulse width	t _{CP}		50			ns	7
CAS low pulse width	tCAS		95			ns	7
CAS cycle time	t _{PC}		175			ns	7
RAS to CAS delay time	t _{RCD}		60			ns	7
CAS hold time	tCSH		170			ns	7
RAS hold time	t _{RSH}		95			ns	7
RAS address setup time	t _{ASR}	Timing for output to the external DRAM.	60			ns	7
RAS address hold time	t _{RAH}	Shown in Figure 8.	20			ns	7
CAS address setup time	tASC		30			ns	7
CAS address hold time	t _{CAH}	1	90			ns	7
DWRT pulse width	t _{WP}	1	95			ns	7
Write command setup time	t _{WCS}	1	12			ns	7
Write command hold time	twch	1	65			ns	7
Output data setup time	t _{DSO}	1	30			ns	7
Output data hold time	t _{DHO}	1	100			ns	7
	C1			13		pF	8
Crystal oscillator	C2	OSC1 and OSC2: shown in Figure 2.		29		pF	8
•	L			1.5		μΗ	8
Current drain		V _{DD} 1, V _{DD} 2, V _{DD} 3; oscillator frequency: 33.8688 MHz		60	95	mA	9

Electrical Characteristics 2 at Ta = 25° C, all V_{DD} = 5.0 V, all V_{SS} = 0 V unless otherwise specified

Parameter	Symbol	Conditions		typ	max	Unit	Note
[A/D Converter Block]			•				_
		1 kHz, 0 dB: Lch		0.065		%	10, 11
Total harmonic distortion	A-THD	1 kHz, 0 dB: Rch		0.065		%	10, 11
		1 kHz, 0 dB: Mic		0.070		%	10, 11
Signal-to-noise ratio	A-S/N	1 kHz, 0 dB	70	75		dB	10, 11
Crosstalk	A-C · T	1 kHz, 0 dB		-72		dB	10
[D/A Converter Block]			•				_
Total harmonic distortion	D-THD	1 kHz, –1 dB		0.045		%	10
Signal-to-noise ratio	D-S/N	1 kHz, –1 dB		78		dB	10
Crosstalk D-0		1 kHz, –1 dB		-75		dB	10

Note: 1. TTL output level pins: ASO, FS384O, BCKO, LRCKO, D0 to D7, A0 to A8, RAS, CAS, DREAD, DWRT

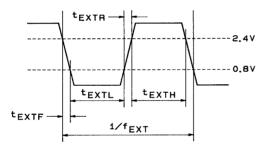
2. CMOS intermediate current output pins: P3, P4, SIAK, TEST6

3. N-channel open-drain intermediate current output pins: P0 to P2

4. Low Schmitt input pins: BCKI, ASI, LRCKI, D0 to D7, FS384I

5. Normal input pins: P0 to P2, TEST1 to TEST5, SELC, SAIF, SAOF

6. Schmitt input pins: RES, SI, SICK, SIRQ, SRDY, OSC1

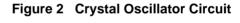

7. When the load capacitance is 50 pF

8. The values for the oscillator capacitors C1 and C2 include the wiring capacitances.

9. The value for the current drain is a typical value for V_{DD} = 5 V, room temperature, and a typical sample.

10. With weight A filter present, with Fs = 44.1 kHz, and tested in the Sanyo evaluation board.

11. Varies with the values of the external components. The listed value is for the circuit structure and values shown in Figure 9 in the Sanyo evaluation board.



OSC1 OSC2

A03579

A03578

Figure 1 External Clock Input Waveform (FS384I)



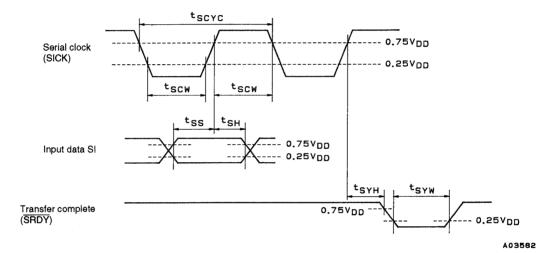
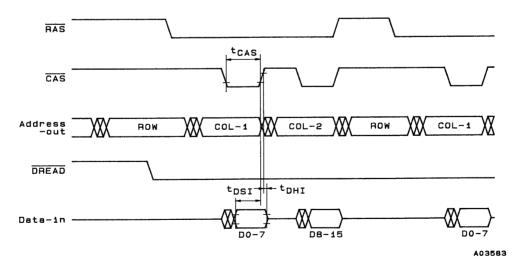
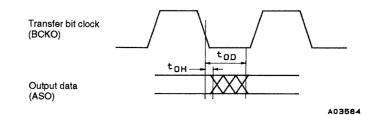


Figure 3 Oscillator Stabilization Time





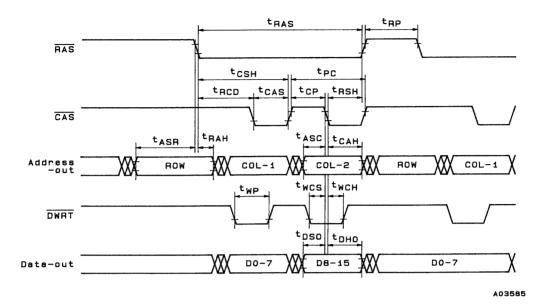


Figure 8 Timing for Data Output to External DRAM

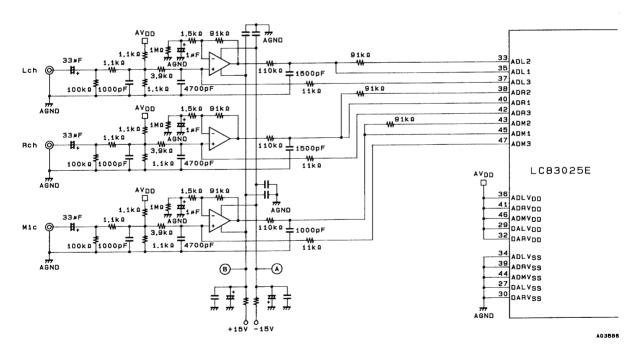


Figure 9 Sample A/D Converter External Circuit

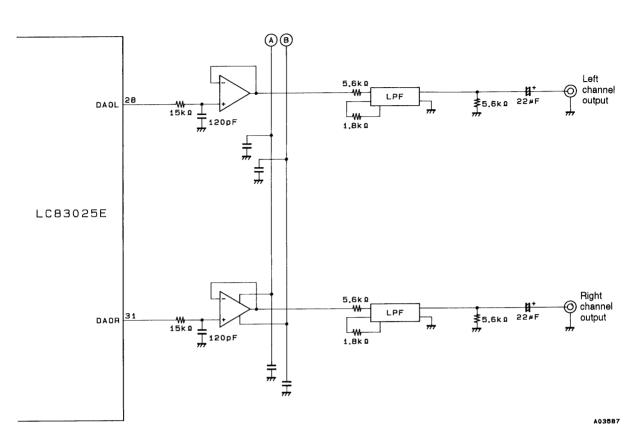
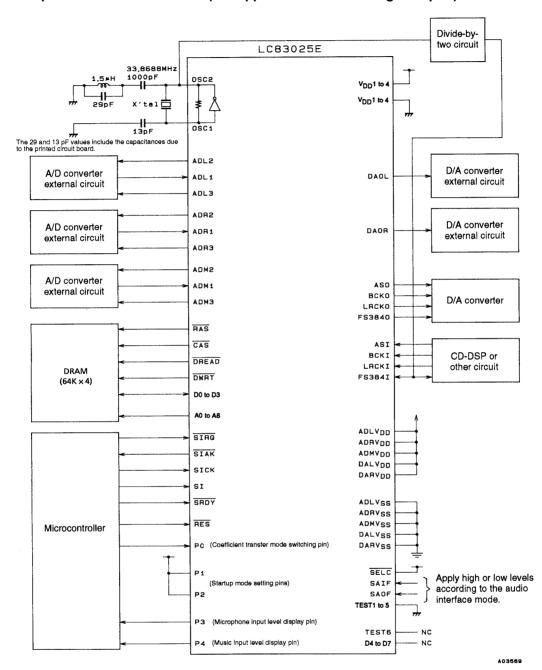



Figure 10 Sample D/A Converter External Circuit

Sample Peripheral Circuit Connection (For applications that do not use digital input)

Whether or not the digital outputs and the analog L/R outputs will be used will be determined by the end product specifications. These pins should be left open if unused.

Sample Peripheral Circuit Connection (For applications that use digital input.)

Whether or not the analog L/R inputs and the analog L/R outputs will be used will be determined by the end product specifications. A high or low level should be applied to unused input pins, and unused output pins should be left open.

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of November, 1997. Specifications and information herein are subject to change without notice.