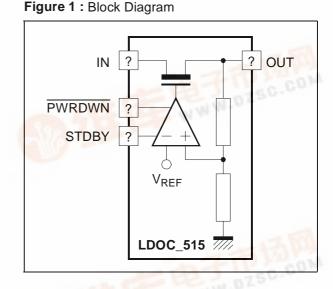


LDOC_515

IP Library: Very Low power, Very High PSRR 100mA Low Dropout Voltage Regulator

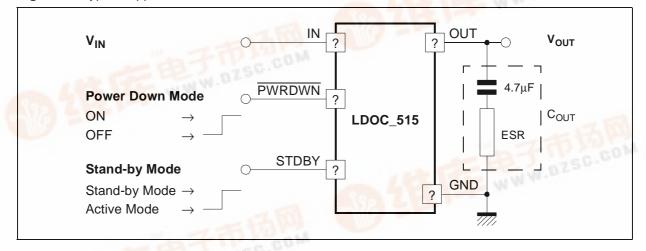
APPLICATION NOTE


PRODUCT PREVIEW

- **CMOS REGULATOR**
- VERY LOW CONSUMPTION: 170µA FULL LOAD
- VERY LOW DROPOUT VOLTAGE: 50mV
- HIGH PSRR: 60dB
- **OUTPUT CURRENT: 100mA**
- NO CURRENT IN POWER DOWN MODE
- SHORT CIRCUIT PROTECTION

TYPICAL APPLICATIONS

- Cellular and Cordless phones supplied by 1 cell Lithium-ion battery / 3 cells Ni-MH or Ni-Cd - PDA (Personal Digital Assistant)
- Smart phone
- Portable equipment
- Supply for RF devices for cellular phone


Figure 2: Typical Application Circuit

An external capacitor ($C_{OUT} = 4.7\mu F$) with an

equivalent serial resistance (ESR) in the range

0.02 to 0.6Ω is used for regulator stability.

zsc.com

LDOC_515

ELECTRICAL CHARACTERISTICS

 $3V < V_{IN} < 5.5V$, $-30^{\circ}C < T_{A} < +85^{\circ}C$, $C_{OUT} = 4.7 \mu F$ $\pm 20\%$, $20 m\Omega < ESR < <math>0.6 \Omega$, $I_{LOAD} = 100 mA$. Typical case : $V_{IN} = 4V$, $T = 25^{\circ}C$, $C_{OUT} = 4.7 \mu F$.

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Input Voltage Range (Note 1)	V _{IN}		3		5.5	V
Output Voltage	V _{OUT}			2.8		V
Output Voltage Accuracy				3		%
Output current	I _{OUT}				100	mA
Dropout Voltage	ΔV_{DO}	$\Delta V_{OUT} = 50 \text{mV},$ $I_{LOAD} = 100 \text{mA}$			50	mV
		(Note 2)	150			
Quiescent current	IQ	$I_{LOAD} = 100\mu A$		30	40	μA
		I _{LOAD} = 100mA		170	220	
Power down mode quiescent current	I _{QPDM}	Power down active		100		nA
Power Supply Rejection Ratio	PSRR	DC ; Dropout = 200mV		60		dB
		f = 10KHz	40	55		
		f = 100KHz	35	40		
Line Regulation	L _{IR}	$I_{LOAD} = 100 \text{mA},$ $V_{IN} = 3 \text{V to } 5.5 \text{V}$		2.5	3.5	mV
Load Regulation	L _{DR}	I _{LOAD} = 100μA - 100mA		25	35	mV
Line Transient	L _{IRT}	$\Delta V_{IN} = 300 \text{mV}$ $t_{RISE} = t_{FALL} = 5 \mu \text{s}$		<1	1.5	mV
Load Transient	L _{DTR}	I _{LOAD} = 100μA - 100mA in 5μs		1	2	mV
Output Noise Voltage	en	100Hz		2		<u>μV</u> √Hz
		1KHz		650		nV
		10KHz		250		√Hz
	en _{RMS}	BW : 100Hz to 100KHz		70		μV_{RMS}
Output decoupling Capacitor	C _{OUT}			4.7		μF
Settling time		I _{LOAD} = 100mA		40	120	μs
Short Circuit Current Limit	I _{SHORT}			400	700	mA

Notes: 1. Above characteristics are given for 3V minimum input operating range voltage, but regulator is operational with 2.7V minimum input voltage.

2. All parameters are guaranteed with 150mV min Dropout voltage.

2/4

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

http://www.st.com