
查询LF411供应商

National Semiconductor

LF411 Low Offset, Low Drift JFET Input Operational Amplifier

General Description

These devices are low cost, high speed, JFET input operational amplifiers with very low input offset voltage and guaranteed input offset voltage drift. They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF411 is pin compatible with the standard LM741 allowing designers to immediately upgrade the overall performance of existing designs.

These amplifiers may be used in applications such as high speed integrators, fast D/A converters, sample and hold circuits and many other circuits requiring low input offset voltage and drift, low input bias current, high input impedance, high slew rate and wide bandwidth.

Features

- Internally trimmed offset voltage: 0.5 mV(max)
- Input offset voltage drift: 10 µV/°C(max)
- Low input bias current: 50 pA
- Low input noise current: 0.01 pA/√Hz
- Wide gain bandwidth: 3 MHz(min)
- High slew rate: 10V/µs(min)
- Low supply current: 1.8 mA
- High input impedance: 10¹²Ω
- Low total harmonic distortion A_V=10, R₁=10k, V₀=20 Vp-p, BW=20 Hz-20 kHz: <0.02%
- Low 1/f noise corner: 50 Hz
- Fast settling time to 0.01%: 2 µs

Typical Connection

LF411XYZ

"M" for military "C" for commercial

"H" or "N"

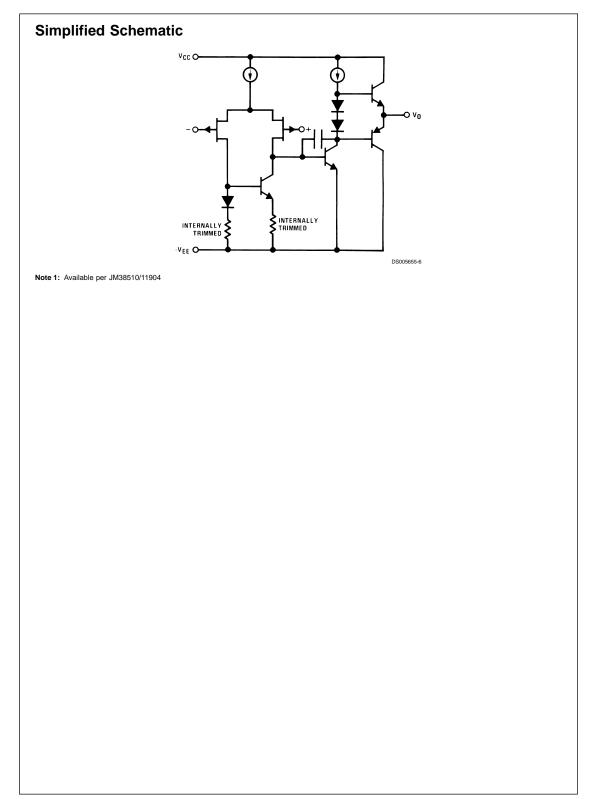
Υ

Connection Diagrams

Metal Can Package Vcc LF411 NON-INVERTIN 10 DS005655-5 Note: Pin 4 connected to case. Top View Order Number LF411ACH or LF411MH/883 (Note 1) VFF DS005655-See NS Package Number H08A **Ordering Information Dual-In-Line Package** X indicates electrical grade BALANCE indicates temperature range OUTPUT INPUT Z indicates package type BALANC

Top View Order Number LF411ACN, LF411CN or LF411MJ/883 (Note 1) See NS Package Number N08E or J08A

DS005655-7


BI-FET II™ is a trademark of National Semiconductor Corporation

© 1999 National Semiconductor Corporation DS005655 www.national.com

_F411 Low Offset, Low Drift JFET Input Operational Amplifier

April 1998

Abe	oluto Maxim	um Datin								N Dee	l.e.e.e		
lf Milit please	Absolute Maximum Ratings (Note 2) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.				max A			15 62°C/M	ckage 0°C / (Still Air <u>)</u> 400 LF/m	115 120°0	N Package 115°C 120°C/W		
,	Supply Voltage Differential Input Voltage					θ _j C Operating Temp.			Flow) C/W				
Input V	Input Voltage Range (Note 3)		±15V		Range Storage Temp.			,	te 5)	(Note 5)			
	Output Short Circuit Duration		us Continuo	us Le	Range Lead Temp. (Soldering,			–65°C≤T _A ≤150°C 260°C			–65°C≤T _A ≤150°C 260°C		
	H Pac Power Dissipation (Notes 4, 11) 670		N Packa 670 mV	E	10 sec.) ESD Tolerance			Rating to be determined					
DC E Symbol	lectrical Ch Parameter	aracteris	tics (Note 6 Condition	,		LF411A			LF41	1	Units		
					Min	Тур	Max	Min	Тур	Max			
Vos	Input Offset Voltag	ge R _s =10	0 kΩ, T _A =25°C			0.3	0.5		0.8	2.0	mV		
$\Delta V_{OS} / \Delta T$	Average TC of Inp Offset Voltage	out R _s =10	$R_s=10 \text{ k}\Omega$ (Note 7)			7	10		7	20 (Note 7)	µV/°C		
los	Input Offset Curre	nt V _S =±	15V	T _j =25°C		25	100		25	100	pА		
		(Notes	s 6, 8)	T _j =70°C			2			2	nA		
				T _j =125°C			25			25	nA		
I _B	Input Bias Current	t V _S =±	15V	T _j =25°C		50	200		50	200	pА		

			I _j =125°C			25			25	nA
I _B	Input Bias Current	V _s =±15V	T _j =25°C		50	200		50	200	pА
		(Notes 6, 8)	T _j =70°C			4			4	nA
			T _j =125°C			50			50	nA
R _{IN}	Input Resistance	T _j =25°C			10 ¹²			10 ¹²		Ω
A _{VOL}	Large Signal Voltage	V _s =±15V, V _o =±10	V,	50	200		25	200		V/mV
	Gain	R _L =2k, T _A =25°C								
		Over Temperature		25	200		15	200		V/mV
Vo	Output Voltage Swing	V _S =±15V, R _L =10k		±12	±13.5		±12	±13.5		V
V _{CM}	Input Common-Mode			±16	+19.5		±11	+14.5		V
	Voltage Range				-16.5			-11.5		V
CMRR	Common-Mode	R _s ≤10k		80	100		70	100		dB
	Rejection Ratio									
PSRR	Supply Voltage	(Note 9)		80	100		70	100		dB
	Rejection Ratio									
Is	Supply Current				1.8	2.8		1.8	3.4	mA

AC Electrical Characteristic (Note 6)

Parameter	Conditions	LF411A			LF411			Units
		Min	Тур	Max	Min	Тур	Max	
Slew Rate	V _S =±15V, T _A =25°C	10	15		8	15		V/µs
Gain-Bandwidth Product	V _S =±15V, T _A =25°C	3	4		2.7	4		MHz
Equivalent Input Noise Voltage	$T_A=25$ °C, $R_S=100\Omega$, f=1 kHz		25			25		nV/√Hz
Equivalent Input Noise Current	T _A =25°C, f=1 kHz		0.01			0.01		pA/√Hz
	Slew Rate Gain-Bandwidth Product Equivalent Input Noise Voltage	Slew Rate $V_S = \pm 15V, T_A = 25^{\circ}C$ Gain-Bandwidth Product $V_S = \pm 15V, T_A = 25^{\circ}C$ Equivalent Input Noise Voltage $T_A = 25^{\circ}C, R_S = 100\Omega, f = 1 \text{ kHz}$	$\begin{tabular}{ c c c c c } \hline & & \hline & \hline & \hline & & \hline & \hline & & \hline \hline & \hline & \hline \hline \hline & \hline \hline & \hline \hline \hline & \hline \hline \hline & \hline \hline \hline \hline & \hline \hline$	$\begin{tabular}{ c c c c c } \hline & & \hline & \hline & \hline & \hline & \hline & & \hline & & \hline & \hline & & \hline & & \hline & \hline & & \hline & \hline & & \hline \hline \hline & \hline \hline$	$\begin{tabular}{ c c c c c } \hline & & \hline & \hline & & & & & & & \hline & & & & & & \hline & & & & & & \hline & & & & & \hline & & & & & \hline & & & & & & & \hline & & & & & & & \hline & &$	$\begin{tabular}{ c c c c c c c } \hline Min & Typ & Max & Min \\ \hline Slew Rate & V_{S} = \pm 15V, T_{A} = 25^{\circ}C & 10 & 15 & 8 \\ \hline Gain-Bandwidth Product & V_{S} = \pm 15V, T_{A} = 25^{\circ}C & 3 & 4 & 2.7 \\ \hline Equivalent Input Noise Voltage & T_{A} = 25^{\circ}C, R_{S} = 100\Omega, \\ f = 1 \ kHz & 25 & 25 \\ \hline \end{array}$	$\begin{tabular}{ c c c c c c c } \hline \hline Min & \hline Typ & Max & Min & \hline Typ \\ \hline Slew Rate & V_S=\pm15V, T_A=25^\circC & 10 & 15 & 8 & 15 \\ \hline Gain-Bandwidth Product & V_S=\pm15V, T_A=25^\circC & 3 & 4 & 2.7 & 4 \\ \hline Equivalent Input Noise Voltage & T_A=25^\circC, R_S=100\Omega, \\ f=1 \ kHz & & 25 & 25 & 25 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

functional, but do not guarantee specific performance limits.

Note 3: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.

AC Electrical Characteristic (Note 6) (Continued)

Note 4: For operating at elevated temperature, these devices must be derated based on a thermal resistance of $\theta_i A$.

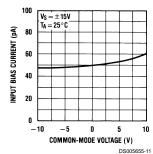
Note 5: These devices are available in both the commercial temperature range $0^{\circ}C \leq T_A \leq 70^{\circ}C$ and the military temperature range $-55^{\circ}C \leq T_A \leq 125^{\circ}C$. The temperature range is designated by the position just before the package type in the device number. A "C" indicates the commercial temperature range and an "M" indicates the military temperature range is available in "H" package only.

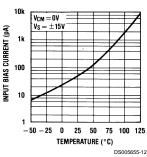
Note 6: Unless otherwise specified, the specifications apply over the full temperature range and for $V_S=\pm 20V$ for the LF411A and for $V_S=\pm 15V$ for the LF411. V_{OS} , I_B, and I_{OS} are measured at $V_{CM}=0$.

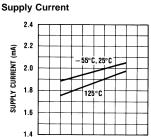
Note 7: The LF411A is 100% tested to this specification. The LF411 is sample tested to insure at least 90% of the units meet this specification.

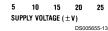
Note 8: The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature, T_j. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, P_D . T_j=T_A+ θ_{jA} P_D where θ_{jA} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.

Note 9: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice, from ±15V to ±5V for the LF411 and from ±20V to ±5V for the LF411A.

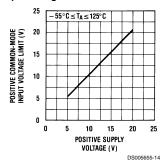

Note 10: RETS 411X for LF411MH and LF411MJ military specifications.

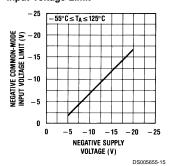

Note 11: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits.


Typical Performance Characteristics

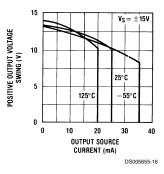


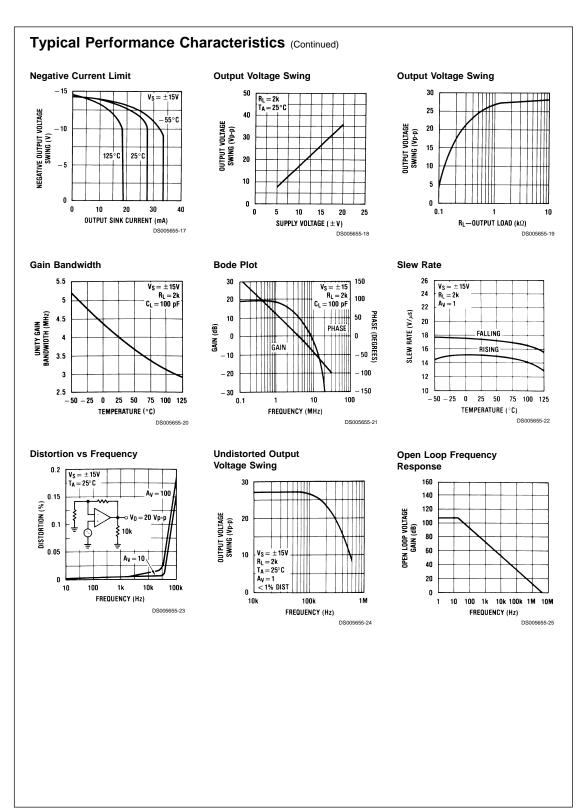
Input Bias Current

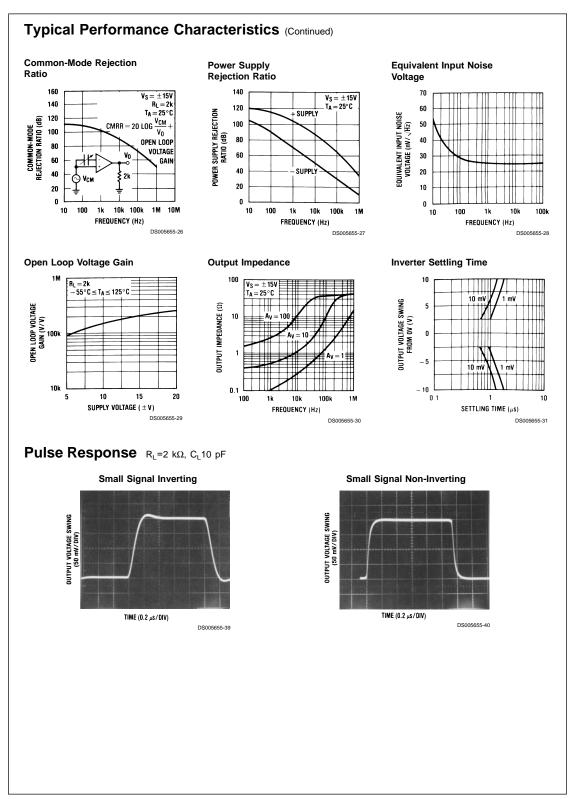


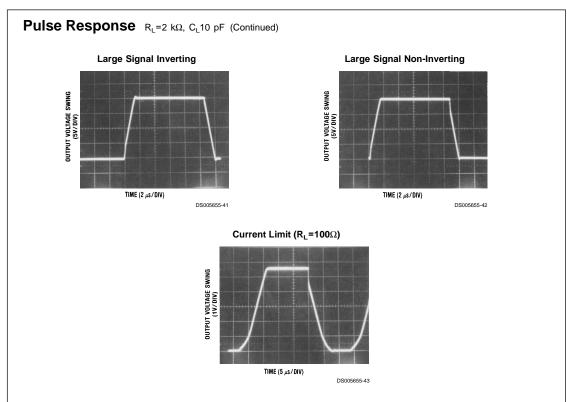


Positive Common-Mode Input Voltage Limit






4



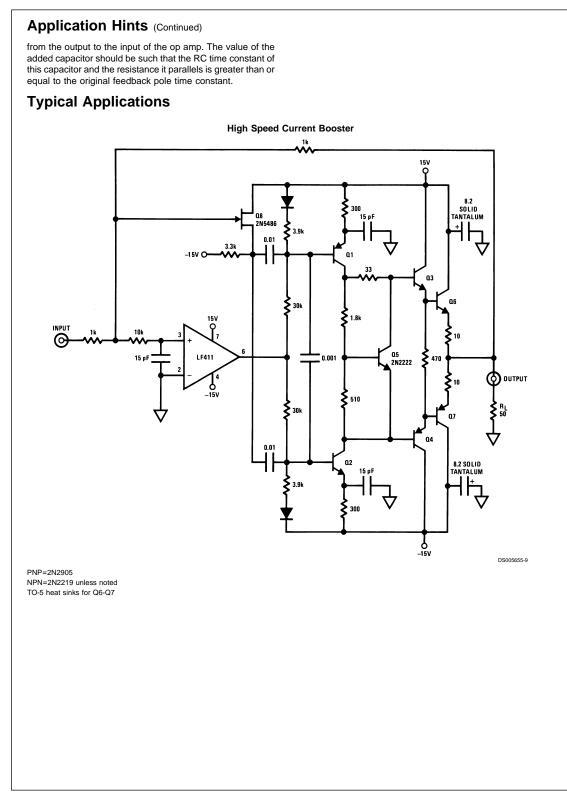
0

Application Hints

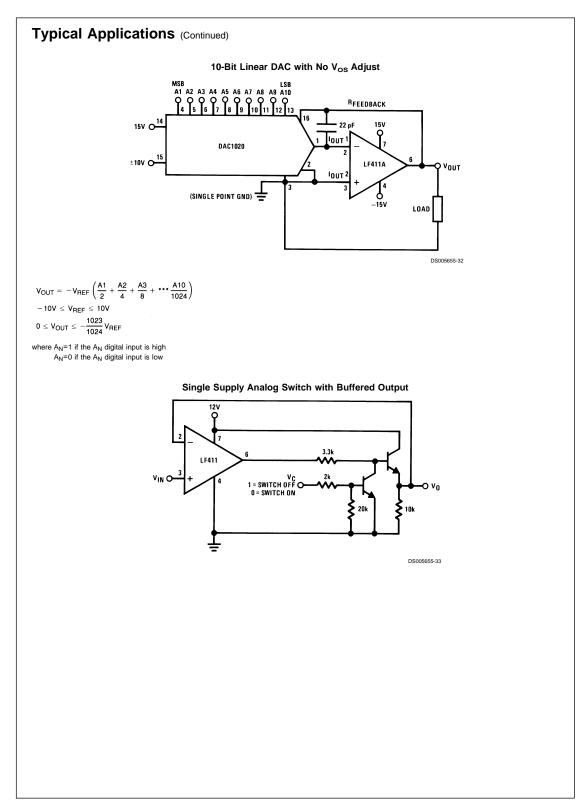
The LF411 series of internally trimmed JFET input op amps (BI-FET IITM) provide very low input offset voltage and guaranteed input offset voltage drift. These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

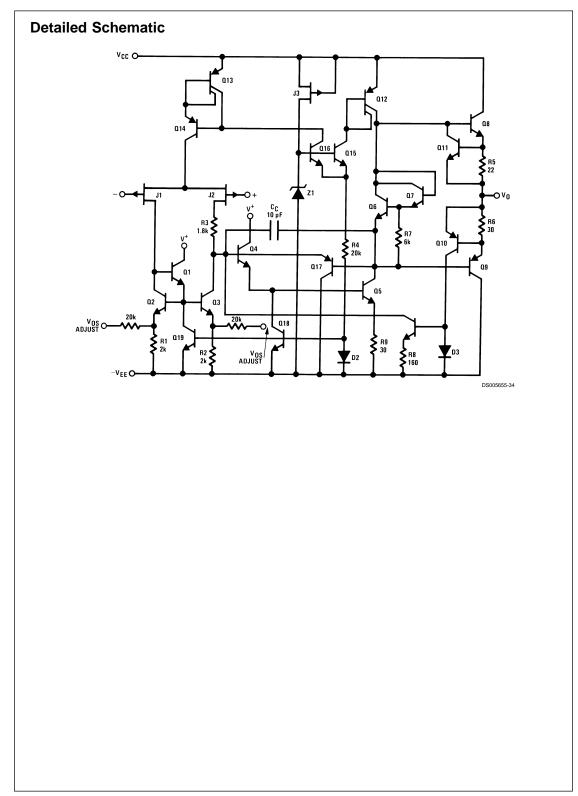
Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

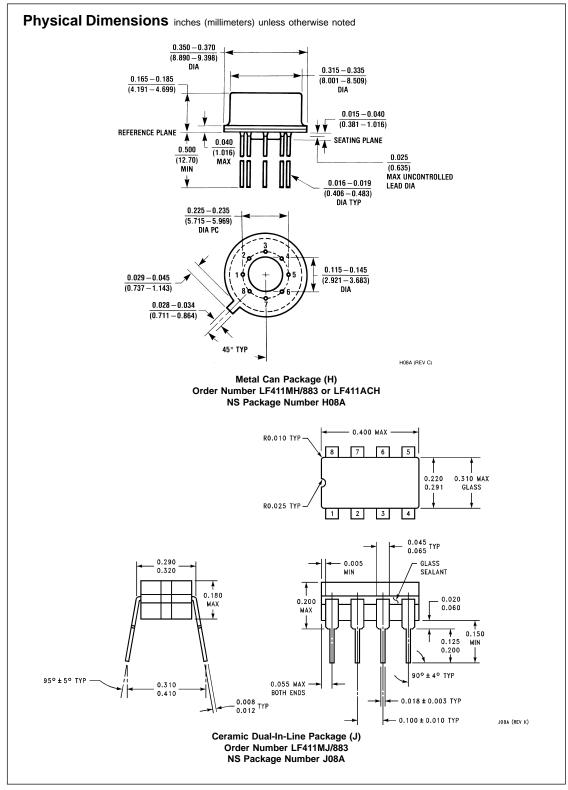
Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier may be forced to a high state.

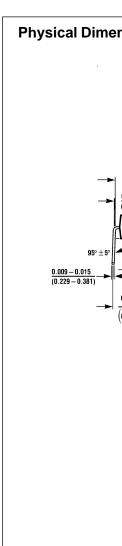

The amplifier will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3V of the negative supply, an increase in input offset voltage may occur. The LF411 is biased by a zener reference which allows normal circuit operation on $\pm 4.5V$ power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.

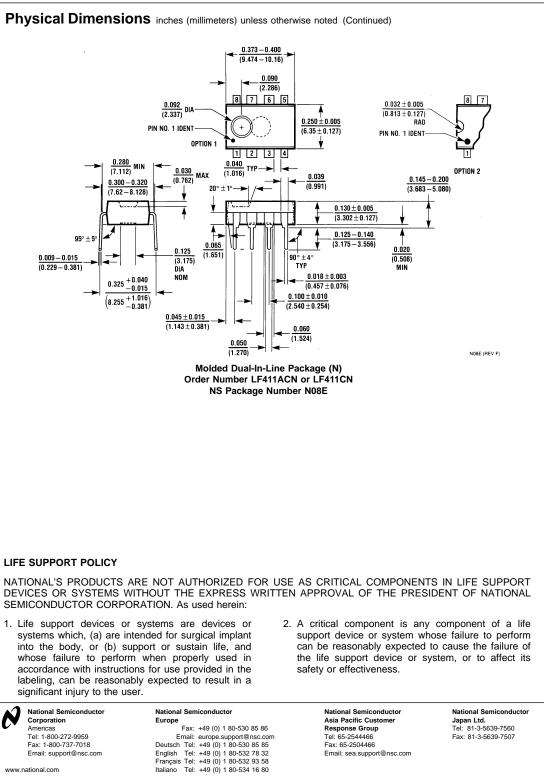
The LF411 will drive a 2 k Ω load resistance to ±10V over the full temperature range. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.


Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.


As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.


A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency, a lead capacitor should be placed




www.national.com

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

LF411 Low Offset, Low Drift JFET Input Operational Amplifier