To；

Reviles？
 COREDUATON
 SPECIFICATIONS

Product Type \qquad 160 Output LCD Segment／Common Driver

Model No． \qquad

This specifications contains 30 pages including the cover and appendix．
If you have any objections，please contact us before issuing purchasing order．

CUSTOMERS ACCEPTANCE

DATE：

BY：
PRESENTED
BY：

Dept．General Manager

REVIEWED BY：
PREPARED BY：

- Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.

When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
(1) The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).

- Office electronics
- Instrumentation and measuring equipment
- Machine tools
- Audiovisual equipment
- Home appliances
- Communication equipment other than for trunk lines
(2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
- Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
- Mainframe computers
-Traffic control systems
- Gas leak detectors and automatic cutoff devices
- Rescue and security equipment
- Other safety devices and safety equipment, etc.
(3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.
- Aerospace equipment
- Communications equipment for trunk lines
- Control equipment for the nuclear power industry
- Medical equipment related to 1 ife support, etc.
(4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.
- Please direct all queries regarding the products covered herein to a sales
representative of the company.
Contents
Page

1. Summary 2
2. Features 2
3. Block Diagram 3
4. Functional Operations of Each Block 3
5. Pin Configuration 5
6. Pin Descriptions 5
-7. Description of Functional Operations8
7. Precaution 17
8. Absolute Maximum Ratings 18
9. Recommended Operating Conditions 18
10. Electrical Characteristics 19
11. Example of System Configuration 25
12. Example of Typical Characteristic 26
13. Package and Packing Specification 27

1. Summary

The LH1560F is a 160 output segment/common driver LSI suitable for driving large scale dot matrix LC panels using as personal computers/work stations. Through the use of SST (Super Slim TCP) technology, it is ideal for substantially decreasing the size of the frame section of the LC module. The LH1560F is good both segment driver and common driver, and a low power consuming, high-precision LC panel display can be assembled.
In case of segment mode, the data input is selected 4 bit parallel input mode and 8 bit parallel input mode by a mode(MD) pin.
In case of common mode, data input/output pins are bidirectional. four data shift directions are pin-selectable.
2. Features
(Segment mode)

- Shift Clock frequency : 14 MHz (Max.) ($\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%$)

$$
: 8 \mathrm{MHz}(\mathrm{Max},)\left(\mathrm{V}_{\mathrm{DD}}=+2.5 \mathrm{~V} \sim+4.5 \mathrm{~V}\right)
$$

- Adopts a data bus system
- 4-bit/8-bit parallel input modes are selectable with a mode (MD) pin
- Automatic transfer function of an enable signal
- Automatic counting function which, in the chip select mode, causes the internal clock to be stopped by automatically counting 160 of input data
(Common mode)
- Shift clock frequency : 4.0 MHz (Max.)
- Built-in 160 -bits bidirectional shift register (divisible into 80-bits $\times 2$)
- Available in a single mode (160 -bits shift register) or in a dual mode (80-bits shift register $\times 2$)
(1) $Y_{1} \rightarrow Y_{160} \quad$ Single mode
(2) $Y_{160} \rightarrow Y_{1}$
(3) $Y_{1} \rightarrow Y_{80}, Y_{81} \rightarrow Y_{180} \quad$ Dual mode
(4) $Y_{160} \rightarrow Y_{81}, Y_{80} \rightarrow Y_{1}$

The above 4 shift directions are pin-selectable
(Both segment mode and sommon mode)

- Supply voltage for LC drive $:+15.0$ to +42.0 V
- Number of LC drive outputs : 160
- Low output impedance
- Low power consumption
- Supply voltage for the logic system : +2.5 to +5.5 V
- COMS silicon gate process(P-type Silicon Substrate)
- Package : 186pin TCP (Tape Carrier Package)
- Not designed or rated as radiation hardened

3. Block Diagram

4. Functional Operations of Each Block

Block	Function
Active Contro	In case of segment mode, controls the selection or deselection of the chip. Following a LP signal input, and after the chip select signal is input, a select signal is generated internally until 160 bits of data have been read in. Once data input has been completed, a select signal for cascade connection is output, and the chip is deselected. In case of common mode, controls the input/output data of bidirectional pins.
SP Conversion \& Data Control	In case of segment mode, keep input data which are 2 clocks of XCK at 4 -bit parallel mode into latch circuit, or keep input data which are 1 clock of XCK at 8 -bit parallel mode into latch circuit, after that they are put on the internal data bus 8 bits at a time.
Data Latch Control	In case of segment mode, selects the state of the data latch which reads in the data bus signals. The shift direction is controlled by the control logic, for every 16 bits of data read in, the selection signal shifts one bit based on the state of the control circuit.

Block	Function
Data Latch	In case of segment mode, latches the data on the data bus. The latched state of each LC driver output pin is controlled by the cotrol logic and the data latch control, 160 bits of data are read in 20 sets of 8 bits.
Line Latch/ Shift Register	In case of segment mode, all 160 bits which have been read into the data latch are simultaneously latched on the falling edge of the LP signal, and output to the level shifter block. In case of common mode, shifts data from the data input pin on the falling edge of the LP signal.
Level Shifter	The logic voltage signal is level-shifted to the LC driver voltage level, and output to the driver block.
	```Drives the LC driver output pins from the line latch/shift register data, selecting one of 4 levels ( }\mp@subsup{V}{0}{\prime},\mp@subsup{V}{12}{\prime},\mp@subsup{V}{43}{},\mp@subsup{V}{5s}{} based on the S/C. FR and DISPOFF signals.```
Control Logic	Controls the operation of each block. In case of segment mode, when a LP signal has been input, all blocks are reset and the control logic waits for the selection signal output from the active control block.   Once the selection signal has been output, operation of the data latch and data transmission are controlled, 160 bits of data are read in, and the chip is deselected.   In case of common mode, controls the direction of data shift.

5. Pin Configuration

6. Pin Descriptions

6-1. Pin Designations

Pin No.	Symbol	I/0	Designation
1 to 160	$Y_{1}-Y_{160}$	0	LC drive output
161, 186	$\mathrm{V}_{0 \mathrm{~L}}, \mathrm{~V}_{0 \mathrm{R}}$	-	Power supply for LC drive
162, 185	$V_{121}, V_{12 \mathrm{R}}$	-	Power supply for LC drive
163, 184	$\mathrm{V}_{43 \mathrm{~L}}, \mathrm{~V}_{43 \mathrm{R}}$	-	Power supply for LC drive
165	L/R	I	Display data shift direction selection
166	$V_{D D}$	-	Power supply for logic system( +2.5 to +5.5 V )
167	S/C	I	Segment mode/common mode selection
168	$\mathrm{EIO}_{2}$	I/0	Input/output for chip select or data of shift register
169 to 175	$\mathrm{DI}_{0}-\mathrm{DI}_{6}$	I	Display data input for segment mode
176	$\mathrm{DI}_{7}$	I	Display data input for Segment mode/ Dual mode data input
177	XCK	I	Display data shift clock input for segment mode
178	DISPOFF	I	Control input for deselect output level
179	LP	I	Latch pulse input/shift clock input for shift register
180	EIO	I/0	Input/output for chip select or data of shift register
181	FR	I	AC-converting signal input for LC drive waveform
182	MD	I	Mode selection input
164, 183	$\mathrm{V}_{\text {s }}$	-	Ground (0 V)

## 6－2．Input／Output Circuits



【Applicable pins】 L／R，S／C，DI $\sim D I_{6}$ ． $\overline{\text { DISPOFF，}}$ LP，FR，MD
Fig． 1 Input Circuit（1）


【Applicable pins】
$\mathrm{DI}_{7}, \mathrm{XCK}$
Fig． 2 Input Circuit（2）


【Applicable pins】 $\mathrm{EIO}_{1}, \mathrm{EIO}_{2}$
Fig． 3 Input／Output Circuit


【Applicable pins】
$Y_{1}$ to $Y_{160}$
Fig． 4 LC Drive Output Circuit

## 7. Description of Functional Operations

## 7-1. Pin Functions

(Segment mode)

Symbol	Function
$V_{\text {D }}$	Logic system power supply pin connects to +2.5 to +5.5
$\mathrm{V}_{\mathrm{ss}}$	Ground pin connects to 0 V
$\begin{aligned} & V_{0 R}, V_{0 L} \\ & V_{12 R}, V_{12 L} \\ & V_{43 R}, V_{43} \end{aligned}$	Power supply pin for LC driver voltage bias.   - Normally, the bias voltage used is set by a resistor divider.   - Ensure that voltages are set such that $V_{5 s}<V_{43}<V_{12}<V_{0}$.   - To further reduce the difference between the output waveforms of LC driver output pins $Y_{1}$ and $Y_{160}$, externally connect $V_{i r}$ and $V_{i L}$ ( $\mathrm{i}=0,12,43$ ).
$\mathrm{DI}_{0}-\mathrm{DI}_{7}$	Input Pin for display data   - In 4-bit parallel input mode, input data into the 4 pins $\mathrm{DI}_{0}-\mathrm{DI}_{3}$. Connect $\mathrm{DI}_{4}-\mathrm{DI}_{7}$ to $\mathrm{V}_{\mathrm{s}}$ or $\mathrm{V}_{\mathrm{DD}}$.   - In 8-bit parallel input mode, input data into the 8 pins $\mathrm{DI}_{0}-\mathrm{DI}_{7}$.
XCK	Clock input pin for taking display data   - Data is read on the falling edge of the clock pulse.
LP	Latch pulse input pin for display data   - Data is latched on the falling edge of the clock pulse.
L/R	Direction selection pin for reading display data   - When set to $\mathrm{V}_{\mathrm{ss}}$ level "L", data is read sequentially from $\mathrm{Y}_{160}$ to $\mathrm{Y}_{1}$   - When set to $\mathrm{V}_{\mathrm{DD}}$ level "H", data is read sequentially from $\mathrm{Y}_{1}$ to $\mathrm{Y}_{180}$
$\overline{\text { DISPOFF }}$	Control input pin for output deselect level   - The input signal is level-shifted from logic voltage level to LC drive voltage level, and controls LC drive circuit.   - When set to $\mathrm{V}_{\mathrm{ss}}$ level "L". the LC drive output pins ( $\mathrm{Y}_{1}-\mathrm{Y}_{160}$ ) are set to level $\mathrm{V}_{\mathrm{ss}}$.   - While set to "L", the contents of the line latch are reset.but read the display data in the data latch regardless of condition of $\overline{\text { DISPOFF }}$. When the DISPOFF function is canceled, the driver outputs deselect level ( $\mathrm{V}_{12}$ or $\mathrm{V}_{43}$ ), then outputs the contents of the date latch on the next falling edge of the LP. That time, if $\overline{\text { DISPOFF }}$ removal time can not keep regulation what is shown $A C$ characteristics (Page 21), can not output the reading data correctly.
FR	AC signal input for LC driving waveform   - The input signal is level-shifted from logic voltage level to LC drive voltage level, and controls LC drive circuit.   - Normally,inputs a frame inversion signal.   - The LC driver output pin's output voltage level can be set using the line latch output signal and the FR signal.   Table of truth values is shown in 7-2-1.
MD	Mode selection pin   - When set to $V_{s}$ level "L", 4-bit parallel input mode is set.   - When set to $V_{D D}$ level "H", 8-bit parallel input mode is set.   - The relationship between the display data and driver output pins is shown in 7-2-2.


Symbol	Function
S/C	Segument mode/common mode selection pin   - When set to $V_{D D}$ level " H ", segment mode is set.
$\begin{aligned} & \mathrm{EIO}_{1} \\ & \text { EIO } \end{aligned}$	Input/Output pin for chip selection   - When $\mathrm{L} / \mathrm{R}$ input is at $\mathrm{V}_{\mathrm{s}}$ level "L". EIO $\mathrm{E}_{1}$ is set for output, and $E I O_{2}$ is set for input.   - When $L / R$ input is at $V_{D D}$ level " H ", $E I O_{1}$ is set for input, and $E I O_{2}$ is set for output.   - During output, set to "H" while LP* $\overline{X C K}$ is " $H$ " and after 160 -bits of data have been read, set to "L" for one cycle (from falling edge to falling edge of $X C K$ ), after which it returns to "H".   - During input. after the LP signal is input, the chip is selected While EI is set to "L". After 160 -bits of data have been read, the chip is deselected.
$Y_{1}-Y_{160}$	LC driver output pins   - Corresponding directly to each bit of the data latch, one level $\left(V_{0}, V_{12}, V_{43}\right.$, or $\left.V_{S S}\right)$ is selected and output. Table of truth values is shown in $7-2-1$.

(Common mode)

Symbol	Function
$V_{\text {D }}$	Logic system power supply pin connects to +2.5 to +5.5 V
$V_{s s}$	Ground pin connects to 0 V
$\begin{aligned} & V_{0 R}, V_{0 L} \\ & V_{12 R}, V_{124} \\ & V_{43 R}, V_{432} \end{aligned}$	Power supply pin for LC driver voltage bias.   - Normally, the bias voltage used is set by a resistor divider.   - Ensure that voltages are set such that $V_{s s}<V_{43}<V_{12}<V_{0}$.   - To further reduce the difference between the output waveforms of LC driver output pins $Y_{1}$ and $Y_{160}$, externally connect $V_{i r}$ and $V_{i L}$ ( $\mathrm{i}=0,12,43$ ).
EIO	Bidirectional shift register shift data input/output pin   - Output pin when $L / R$ is at $V_{s s}$ level "L". input pin when $L / R$ is at $V_{D D}$ level " H ".   - When EIO 1 is used as input pin, it will be pull-doen.   - When EIO is used as output pin,it won't be pull-down.
$\mathrm{EIO}_{2}$	Bidirectional shift register shift data input/output pin   - Input pin when $L / R$ is at $V_{s s}$ level " $L$ ", output pin when $L / R$ is at $V_{D D}$ level "H".   - When $E \mathrm{EO}_{2}$ is used as input pin, it will be pull-down.   - When $E I O_{2}$ is used as output pin, it won't be pull-down.
LP	Bidirectional shift register shift clock pulse input pin   - Data is shifted on the falling edge of the clock pulse.
L/R	Bidirectional shift register shift direction selection pin   - Data is shifted from $Y_{160}$ to $Y_{1}$ when set to $V_{s s}$ level "L", and data is shifted from $Y_{1}$ to $Y_{160}$ when set to $V_{D D}$ level "H".


$\overline{\text { DISPOFF }}$	Control input pin for output deselect level   -The input signal is level-shifted from logic voltage level to LC drive voltage level, and controls LC drive circuit.   - When set to $\mathrm{V}_{\mathrm{s}}$ level "L". the LC driver output pins ( $\mathrm{Y}_{1}-\mathrm{Y}_{180}$ ) are set to level $\mathrm{V}_{\mathrm{s}}$.   - While set to "L", the contents of the shift resister are reset not reading data. When the DISPOFF function is canceled, the driver outputs deselect level ( $V_{12}$ or $V_{43}$ ), and the shift data is reading on the falling edge of the LP. That time, if $\overline{\text { DISPOFF }}$ removal time can not keep regulation what is shown AC characteristics (Page 24), the shift data is not reading correctly.
FR	AC signal input for LC driving waveform   - The input signal is level-shifted from logic voltage level to LC drive voltage level, and controls LC drive circuit.   - Normally, input a frame inversion signal.   - The LC driver output pin's output voltage level can be set using the shift register output signal and the ER signal.   Table of truth values is shown in 7-2-1.
MD	Mode selection pin   -When set $\mathrm{V}_{\mathrm{s}}$ level "L", Single Mode operation is selected, when set to $V_{D D}$ level "H". Dual Mode operation is selected.
$\mathrm{DI}_{7}$	Dual Mode data input pin   - According to the data shift direction of the data shift register. data can be input starting from the 81st bit.   When the chip is used as Dual Mode, $\mathrm{DI}_{7}$ will be pull-down.   When the chip is used as Single Mode. DI $7_{7}$ won't pull-down.
S/C	Segment mode/common mode selection pin   -When set to $\mathrm{V}_{\mathrm{ss}}$ level "L". common mode is set.
$D I_{0}-\mathrm{DI}_{6}$	Not used   - Connect $\mathrm{DI}_{0}-\mathrm{DI}_{g}$ to $\mathrm{V}_{\mathrm{s}}$ or $\mathrm{V}_{\mathrm{DD}}$. Avoiding floating.
XCK	Not used   - XCK is pull-down in common mode, so connect to $V_{s s}$ or open.
$Y_{1}-Y_{160}$	LC driver output pins   - Corresponding directly to each bit of the shift register, one level ( $\mathrm{V}_{0}, \mathrm{~V}_{12}, \mathrm{~V}_{43}$, or $\mathrm{V}_{\mathrm{s}}$ ) is selected and output.   Table of truth values is shown in 7-2-1.

## 7-2. Functional Operations

7-2-1. Truth Table
(Segment Mode)

FR	Latch Data	DISPOFF	Driver Output Voltage Level ( $\mathrm{Y}_{1}-\mathrm{Y}_{160}$ )
L	L	H	$\mathrm{V}_{43}$
L	H	H	$\mathrm{V}_{\mathrm{s} \mathrm{s}}$
H	L	H	$V_{12}$
H	H	H	$\mathrm{V}_{0}$
X	X	L	$V_{\text {s }}$

Here, $\mathrm{V}_{\mathrm{ss}}<\mathrm{V}_{43}<\mathrm{V}_{12}<\mathrm{V}_{0}, \mathrm{H}: \mathrm{V}_{\mathrm{DD}}(+2.5$ to $+5.5 \mathrm{~V})$, $\mathrm{L}: \mathrm{V}_{\mathrm{s}}(0 \mathrm{~V}), \mathrm{x}$ : Don't care
(Common Mode)

FR	Latch Data	DISPOFF	Driver Output Voltage Level $\left(Y_{1}-Y_{180}\right)$
L	L	H	$\mathrm{V}_{43}$
L	H	H	$\mathrm{V}_{0}$
$H$	L	H	$\mathrm{V}_{12}$
$H$	H	H	$\mathrm{V}_{\mathrm{ss}}$
X	X	L	$\mathrm{V}_{\mathrm{ss}}$

Here, $\mathrm{V}_{\mathrm{Ss}}<\mathrm{V}_{43}<\mathrm{V}_{12}<\mathrm{V}_{0}, \mathrm{H}: \mathrm{V}_{\mathrm{DD}}(+2.5$ to $+5.5 \mathrm{~V}), \mathrm{L}: \mathrm{V}_{\mathrm{s}}(0 \mathrm{~V}), \mathrm{X}$ : Don't care
【Note】There are two kinds of power supply (logic level voltage, LC drive voltage) for LCD driver. please supply regular voltage which assigned by specification for each power pin. That time "Don't care" should be fixed to "H" or "L". avoiding floating.

7-2-2. Relationship between the Display Data and Driver Output pins
(Segment Mode)
(a) 4-bit Parallel Mode

MD	L/R	EIO	$\mathrm{EIO}_{2}$	Data Input	Figure of Clock						
					40clock	39clock	38clcok	..	3clock	2clock	1clock
L	L	Output	Input	DIo	$Y_{1}$	Y 5	Y ${ }_{9}$	.	$Y_{149}$	$\mathrm{Y}_{153}$	$Y_{157}$
				$\mathrm{DI}_{1}$	$Y_{2}$	$\mathrm{Y}_{8}$	$Y_{10}$	. $\cdot$	$Y_{150}$	$Y_{154}$	$Y_{158}$
				$\mathrm{DI}_{2}$	Y 3	$Y_{7}$	$Y_{11}$	$\cdots$	$Y_{151}$	$Y_{155}$	$Y_{159}$
				$\mathrm{DI}_{3}$	$Y_{4}$	$Y_{8}$	$Y_{12}$	$\cdots$	$Y_{152}$	$Y_{158}$	$Y_{160}$
L	H	Input ${ }^{-}$	Output	DI ${ }_{0}$	$Y_{180}$	$Y_{158}$	$\mathrm{Y}_{152}$	.	$Y_{12}$	$\mathrm{Y}_{8}$	$\mathrm{Y}_{4}$
				DI 1	$Y_{159}$	$Y_{155}$	$Y_{151}$	.	$Y_{11}$	Y 7	Y ${ }_{3}$
				$\mathrm{DI}_{2}$	$Y_{158}$	$Y_{154}$	$Y_{150}$	-•	$Y_{10}$	Y ${ }_{6}$	$Y 2$
				$\mathrm{DI}_{3}$	$Y_{157}$	$Y_{153}$	$Y_{149}$	. $\cdot$	Y 9	Y 5	$Y_{1}$

(b) 8-bit Parallel Mode

MD	L/R	EIO	$\mathrm{EIO}_{2}$	$\begin{aligned} & \text { Data } \\ & \text { Input } \end{aligned}$	Figure of Clock						
					20clock	19clock	18clock	. $\cdot$	3clock	2clock	1clock
H	L	Output	Input	D $\mathrm{I}_{0}$	Y 1	Y 9	$\mathrm{Y}_{17}$	$\cdots$	$Y_{137}$	$\mathrm{Y}_{145}$	$\mathrm{Y}_{153}$
				$\mathrm{DI}_{1}$	Y 2	$Y_{10}$	$Y_{18}$	.	$Y_{138}$	$\mathrm{Y}_{146}$	$Y_{154}$
				$\mathrm{DI}_{2}$	$Y 3$	$Y_{11}$	$Y_{19}$	$\cdots$	$Y_{139}$	$Y_{147}$	$Y_{155}$
				$\mathrm{DI}_{3}$	$\mathrm{Y}_{4}$	$Y_{12}$	$Y_{20}$	$\cdots$	$Y_{140}$	$Y_{148}$	$Y_{156}$
				$\mathrm{DI}_{4}$	$Y 5$	$Y_{13}$	$Y_{21}$	-•	$Y_{141}$	$Y_{149}$	$Y_{157}$
				$\mathrm{DI}_{5}$	$\mathrm{Y}_{6}$	$Y_{14}$	$Y_{22}$	$\cdots$	$Y_{142}$	$Y_{150}$	$Y_{158}$
				$\mathrm{DI}_{6}$	$Y_{7}$	$Y_{15}$	$\mathrm{Y}_{23}$	$\cdots$	$Y_{143}$	$Y_{151}$	$Y_{159}$
				$\mathrm{DI}_{7}$	$Y_{8}$	$Y_{16}$	$Y_{24}$	.	$Y_{144}$	$Y_{152}$	$Y_{160}$
H	H	Input ${ }^{\circ}$	Output	DI 0	$Y_{160}$	$Y_{152}$	$Y_{144}$	.	$Y_{24}$	$Y_{16}$	$Y^{1} 8$
				DI ${ }_{1}$	$Y_{159}$	$Y_{151}$	$Y_{143}$	$\cdots$	$Y_{23}$	$Y_{15}$	Y 7
				$\mathrm{DI}_{2}$	$Y_{158}$	$Y_{150}$	$\mathrm{Y}_{142}$	-•	$Y_{22}$	$Y_{14}$	$\mathrm{Y}_{6}$
				$\mathrm{DI}_{3}$	$Y_{157}$	$Y_{149}$	$Y_{141}$	$\cdots$	$Y_{21}$	$Y_{13}$	Y 5
				$\mathrm{DI}_{4}$	$Y_{156}$	$Y_{148}$	$Y_{140}$	$\cdots$	$Y_{20}$	$\mathrm{Y}_{\mathrm{i} 2}$	$Y_{4}$
				$\mathrm{DI}_{5}$	$Y_{155}$	$Y_{147}$	$Y_{139}$	-•	$Y_{19}$	$Y_{11}$	Y 3
				$\mathrm{DI}_{6}$	$Y_{154}$	$Y_{146}$	$Y_{138}$	$\cdots$	$Y_{18}$	$Y_{10}$	$Y_{2}$
				$\mathrm{DI}_{7}$	$Y_{153}$	$Y_{145}$	$Y_{137}$	$\cdots$	$Y_{17}$	Y ${ }_{9}$	Y 1

(Common Mode)

MD	L/R	Data Transfer Direction	$\mathrm{EIO}_{1}$	$\mathrm{EIO}_{2}$	$\mathrm{DI}_{7}$
$\begin{gathered} \mathrm{L} \\ (\text { Single }) \end{gathered}$	L(shift to left)	$\mathrm{Y}_{160} \rightarrow \mathrm{Y}_{1}$	Output	Input	X
	H(shift to right)	$\mathrm{Y}_{1} \rightarrow \mathrm{Y}_{160}$	Input	Output	X
$\begin{gathered} \mathrm{H} \\ \text { (Dual) } \end{gathered}$	L(shift to left)	$\begin{array}{ll} Y_{160} & \rightarrow Y_{81} \\ Y_{80} & \rightarrow Y_{1} \\ \hline \end{array}$	Output	Inpout	Input
	H(shift to right)	$\begin{array}{ll} Y_{1} & \rightarrow Y_{80} \\ Y_{81} & \rightarrow Y_{160} \\ \hline \end{array}$	Inpout	Output	Input

Here, L:Vss $(0 \mathrm{~V})$, $\mathrm{H}: \mathrm{V}_{\mathrm{DD}}(+2.5 \mathrm{~V}$ to $+5.5 \mathrm{~V})$. X : Don't Care
【Note】 "Don't care" should be fixed to "H" or "L", avoiding floating.

## 7-2-3. Connection Examples of Plural Segment Drivers

(a) Case of $L / R=" L "$

(b) Case of $L / R=$ " $H$ "


## SHARP

7-2-4. Timing Chart of 4 -Device cascade Connection of Segment Drivers


EI
H
(device A)
L
E0
(device A)
E0
(device B)
E0
(device C)
(*) $\mathrm{n}: 4$-bit parallel mode 40
8 -bit parallel mode 20

## 7-2-5. Conection Examples for Plural Common Drivers



Fig. 1 Single Mode (Shifting toward left)


Fig. 2 Single Mode (Sifting toward right)


Fig. 3 Dual Mode (Shifting toward left)


Fig. 4 Dual Mode (Shifting toward right)

## 8. Precaution

OPrecaution when connecting or disconnecting the power
This LSI has a high-voltage LC driver, so it may be permanently damaged by a high current which may flow if a voltage is supplied to the LC driver power supply while the logic system power supply is floating.
The detail is as follows.

- When connecting the power supply, connect the LC drive power after connecting the logic system power. Furthermore, when disconnecting the power, disconnect the logic system power after disconnecting the LC drive power.
- We recommend you connecting the serial resistor (50~100 $\Omega$ ) or fuse to the LC drive power $V_{0}$ of the system as a current limitter. And set up the suitable value of the resistor in consideration of LC display grade.

And when connecting the logic power supply, the logic condition of this LSI inside is insecurity. Therefore connect the LC drive power supply after resetting logic condition of this LSI inside on DISPOFF function. After that, cancel the DISPOFF function after the LC drive power supply has become stable. Furthermore, when disconnecting the power. set the LC drive output pins to level $V_{s s}$ on DISPOFF function. After that, disconnect the logic system power after disconnecting the LC drive power.
When connecting the power supply, show the following recommend sequence.


## 9. Absolute Maximum Ratings

Parameter	Symbol	Conditions	Applicable pins	Ratings	Unit
Supply voltage (1)	$\mathrm{V}_{\mathrm{D}}$ D	$\begin{aligned} & \text { Ta=25 } \\ & \text { Referenced } \\ & \text { to } V_{\text {ss }}\binom{0}{\hline} \end{aligned}$	$V_{D D}$	-0.3 to +7.0	V
Supply voltage (2)	$\mathrm{V}_{0}$		$\mathrm{V}_{0 L}, \mathrm{~V}_{0 \mathrm{R}}$	-0.3 to +45.0	V
	$V_{12}$		$\mathrm{V}_{12 \mathrm{~L}}, \mathrm{~V}_{12 \mathrm{R}}$	-0.3 to $\mathrm{V}_{0}+0.3$	$v$
	$V_{43}$		$\mathrm{V}_{43 \mathrm{~L},} \mathrm{~V}_{43 \mathrm{R}}$	-0.3 to $\mathrm{V}_{0}+0.3$	$V$
Input voltage	$\mathrm{V}_{1}$		$\begin{aligned} & \mathrm{DI}_{0}-7, \mathrm{XCK}, \mathrm{IP}, \mathrm{~L} / \mathrm{R}, \mathrm{FR} \\ & \mathrm{MD}, \mathrm{~S} / \mathrm{C}, \mathrm{EIO}, \mathrm{EIO} \\ & \hline \mathrm{DISPOFF} \end{aligned}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Storage temperature	Ts: 8			-45 to +125	T

10. Recommended Operating Conditions

Parameter	Symbol	Conditions	Applicable pins	Min.	Typ.	Max.	Unit
Supply voltage (1)	$\mathrm{V}_{\text {D }}$	Referenced	$V_{D D}$	+2.5		+5.5	V
Supply voltage (2)	$\mathrm{V}_{0}$	to $\mathrm{V}_{5 s}(0 \mathrm{~V}) \mathrm{V}$	$\mathrm{V}_{0 L}, \mathrm{~V}_{0 \mathrm{R}}$	+15.0		+42.0	$\checkmark$
Operating temperature	Todr			-20		+85	$\stackrel{\square}{ }$

【Note】Ensure that voltages are set such that $V_{s s}<V_{43}<V_{12}<V_{0}$

## SHARP

## 11. Electrical Characteristics

11-1. DC Characteristics
(Segment Mode)
$\left(\mathrm{V}_{\mathrm{Ss}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+2.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{0}=+15.0$ to $0+42.0 \mathrm{~V}, \mathrm{Ta}=-20$ to $\left.+85 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	Applicable pins	Min.	Typ.	Max.	Unit
Input voltage	$V_{1!}$		$\begin{array}{\|l\|} \hline \mathrm{DI}_{0 \sim 7}, \mathrm{XCK}, \mathrm{LP}, \mathrm{~L} / \mathrm{R} \\ \mathrm{FR}, \mathrm{MD}, \mathrm{~S} / \mathrm{C}, \mathrm{EIO} \\ \mathrm{EIO}, \overline{\mathrm{DISPOFF}} \\ \hline \end{array}$	$0.8 \mathrm{~V}_{\mathrm{DD}}$			V
	$\mathrm{V}_{\text {IL }}$					$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
Output voltage	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	$\mathrm{EIO}_{1}, \mathrm{EIO}_{2}$	$V_{\text {DD }}-0.4$			V
	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{0 \mathrm{~L}}=+0.4 \mathrm{~mA}$				+0.4	V
Input leakage current	$\mathrm{I}_{\mathrm{LIH}}$	$V_{1}=V_{D D}$	$\begin{aligned} & \mathrm{DI}_{0 \sim 7}, \mathrm{XCK}, \mathrm{LP}, \mathrm{~L} / \mathrm{A} \\ & \mathrm{FR}, \mathrm{MD}, \mathrm{~S} / \mathrm{C}, \mathrm{EIO} \\ & \mathrm{EIO}_{2}, \mathrm{DISPOFF} \end{aligned}$			$+10.0$	$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{L} \text { IL }}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{s} ~}$				-10.0	$\mu \mathrm{A}$
			$Y_{1}-Y_{160}$		0.7	1.0	k?
Output resistance	$\mathrm{R}_{\mathrm{on}}$				1.0	1.5	
					1.5	2.0	
Stand-by current	ISTB	${ }^{*} 1$	$\mathrm{V}_{\mathrm{ss}}$			50.0	$\mu \mathrm{A}$
Consumed current(1) (Deselection)	$\mathrm{IDD} 1^{\text {d }}$	*2	$V_{D D}$			2.0	mA
Consumed current (2) (Selection)	IDD 2	*3	$V_{D D}$			8.0	mA
Consumed current	$\mathrm{I}_{0}$	* 4	$\mathrm{V}_{0}$			1.0	mA

【Note】
$*_{1} V_{D D}=+5.0 \mathrm{~V}, V_{0}=+42.0 \mathrm{~V}, V_{1}=V_{S ~}$
$*_{2} V_{D D}=+5.0 \mathrm{~V}, V_{0}=+42.0 \mathrm{~V}, \mathrm{f}_{\mathrm{xc}}=14 \mathrm{MHz}$, No-load, $\mathrm{EI}=\mathrm{V}_{\mathrm{DD}}$
The input data is turned over by data taking clock (4-bit parallel input mode)
*3 $\mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V}, \mathrm{~V}_{0}=+42.0 \mathrm{~V}, \mathrm{f}_{\mathrm{xck}}=14 \mathrm{MHz}$, No-load, $\mathrm{E}=\mathrm{V}_{\mathrm{S}} \mathrm{s}$
The input data is turned over by data taking clock (4-bit parallel input mode)
$*_{4} \mathrm{~V}_{\mathrm{DD}}=+5.0 \mathrm{~V}, \mathrm{~V}_{0}=+42.0 \mathrm{~V}, \mathrm{f}_{\mathrm{Xck}}=14 \mathrm{MHz}, \mathrm{f}_{\mathrm{L},}=41.6 \mathrm{kHz}, \mathrm{f}_{\mathrm{FR}}=80 \mathrm{~Hz}$, No-load
The input data is turned over by data taking clock(4-bit parallel-input mode)
(Common Mode)
$\left(\mathrm{V}_{\mathrm{Ss}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+2.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{0}=+15.0$ to $+42.0 \mathrm{~V}, \mathrm{Ta}=-20$ to $\left.+85 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	Applicable pins	Min.	Typ.	Max.	Unit
Input voltage	$\mathrm{V}_{\text {I }}$		$\begin{aligned} & \mathrm{DI}_{0-7}, \mathrm{XCK}, \mathrm{LP}, \mathrm{~L} / \mathrm{K} \\ & \mathrm{FR}, \mathrm{MD}, \mathrm{~S} / \mathrm{C}, \mathrm{EIO} \\ & \mathrm{EIO} \\ & 2 \end{aligned}$	$0.8 \mathrm{~V}_{D D}$			V
	$\mathrm{V}_{12}$					0.2 V D	V
Output voltage	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	$\mathrm{EIO}_{1}$, EIO 2	$V_{D D}-0.4$			V
	$\mathrm{V}_{\mathrm{OL}}$	$\mathrm{I}_{0\llcorner }=+0.4 \mathrm{~mA}$				+0.4	V
Input leakage current	$\mathrm{I}_{\mathrm{LIH}}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{D}}$	$\begin{aligned} & \mathrm{DI}_{0 \sim 6}, \mathrm{LP}, \mathrm{~L} / \mathrm{R}, \mathrm{FR} \\ & \mathrm{MD}, \mathrm{~S} / \mathrm{C}, \mathrm{DISPOFF} \end{aligned}$			+10.0	$\mu \mathrm{A}$
	ILIL	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{s}} \mathrm{s}$	$\begin{array}{\|l} \mathrm{DI}_{0} \sim 7, \mathrm{XCK}, \mathrm{LP}, \mathrm{~L} / \mathrm{R} \\ \text { FR.MD,S/C.EIO } \\ \mathrm{EIO}_{2}, \frac{\mathrm{DISPOFF}}{} \end{array}$			-10.0	$\mu \mathrm{A}$
Input pull-down current	$I_{P D}$	$V_{I}=V_{D D}$	$\begin{aligned} & \mathrm{XCK}, \mathrm{EIO}, \mathrm{EIO}_{2} \\ & \mathrm{DI}_{7} \\ & \hline \end{aligned}$			100.0	$\mu \mathrm{A}$
Output resistance	$\mathrm{R}_{\mathrm{on}}$	$1 J V_{0 N}$ $V_{0}=+40.0 \mathrm{~V}$   $=0.5$ $V_{0}=+30.0 \mathrm{~V}$    $\mathrm{~V}_{0}=+20.0 \mathrm{y}$	$Y_{1}-Y_{160}$		0.7 1.0 1.5	1.0 1.5 2.0	k ?
Stand-by current	Is ti	* 1	$\mathrm{V}_{\mathrm{ss}}$			50.0	$\mu \mathrm{A}$
Consumed current (1)	$I_{D D}$	*2	$V_{\text {D D }}$			80.0	$\mu \mathrm{A}$
Consumed current (2)	$\mathrm{I}_{0}$	*2	$V_{0}$			160.0	$\mu \mathrm{A}$

$\star_{1} \mathrm{~V}_{\mathrm{DD}}=+5.0 \mathrm{~V}, \mathrm{~V}_{0}=+42.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{s}}$
$*_{2} V_{D D}=+5.0 \mathrm{~V}, \mathrm{~V}_{0}=+42.0 \mathrm{~V}, \mathrm{f}_{\mathrm{L} P}=41.6 \mathrm{kHz}, \mathrm{f}_{\mathrm{FR}}=80 \mathrm{~Hz}$
case of $1 / 480$ duty operation. No-load

## 11-2. AC Characteristics

(Segment Mode 1)
$\left(\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{0}=+15.0$ to $+42.0 \mathrm{~V}, \mathrm{Ta}=-20$ to $\left.+85 \mathrm{\gamma}\right)$

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Shift clock period *1	ck	$\mathrm{t}_{\mathrm{r}, \mathrm{t}, \mathrm{t}} \leq 10 \mathrm{~ns}$	71			ns
Shift clock "H" pulse width	$\mathrm{t}_{\text {wick }}$		23			ns
Shift clock "L" pulse width	кL		23			ns
Data setup time	$\mathrm{t}_{\mathrm{DS}}$		10			ns
Data hold time	$\mathrm{t}_{\mathrm{DH}}$		20			ns
Latch pulse "H" pulse width	$\mathrm{t}_{\text {WLP }}$		23			ns
Shift clock rise to Latch pulse rise time	$t_{\text {L }}$		0			ns
Shift clock fall to	$\mathrm{t}_{\mathrm{st}}$		25			ns
Latch pulse fall time						
Latch pulse rise to   Shift clock rise time	$\mathrm{t}_{\mathrm{L}}$		25			ns
Latch pulse fall to	$\mathrm{t}_{\mathrm{L} .1}$		25			ns
Shift pulse fall time						
Input signal rise time *2	$\mathrm{t}_{\text {r }}$				50	ns
Input signal fall time *2	$\mathrm{t}_{1}$				50	ns
Enable setup time	$\mathrm{t}_{\mathrm{s}}$		21			ns
$\overline{\text { DISPOFF }}$ removal time	$\mathrm{t}_{\text {s }}$ D		100			ns
$\overline{\overline{\text { DISPOFF }} \text { "L" pulse width }}$	$\mathrm{t}_{\text {wDL }}$		1.2			$\mu \mathrm{s}$
Output delay time (1)	$\mathrm{t}_{\mathrm{D}}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			40	ns
Output delay time (2)	$t_{p d 1}, t_{p d 2}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			1.2	us
Output delay time (3)	$\mathrm{t}_{\mathrm{p} d 3}$	$\mathrm{C}_{2}=15 \mathrm{pF}$			1.2	$\mu \mathrm{s}$

【Note】

* 1 Take the cascade connection into consideration.
*2 ( $\mathrm{t}_{\mathrm{ck}}-\mathrm{t}_{\mathrm{wckn}}-\mathrm{t}_{\mathrm{wck}}$ )/2 is maximum in the case of high speed operation.
(Segment Mode 2)
$\left(\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+2.5 \mathrm{~V}\right.$ to $+4.5 \mathrm{~V}, \mathrm{~V}_{0}=+15.0$ to $+42.0 \mathrm{~V}, \mathrm{Ta}=-20$ to $\left.+85 \mathrm{~V}\right)$

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Shift clock period *1	$\mathrm{t}_{\mathrm{wck}}$	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{1} \leqq 11 \mathrm{~ns}$	125			ns
Shift clock "H" pulse width	$\mathrm{t}_{\text {wckn }}$		51			ns
Shift clock "L" pulse width	$t_{\text {wCKL }}$		51			ns
Data setup time	$t_{\text {d }}$		30			ns
Data hold time	$\mathrm{t}_{\mathrm{DH}}$		40			ns
Latch pulse "H" pulse width	$\mathrm{t}_{\text {wLP }}$		51			ns
Shift clock rise to Latch pulse rise time	$\mathrm{t}_{\mathrm{LD}}$		0			ns
Shift clock fall to Latch pulse fall time	$\mathrm{t}_{\mathrm{sL}}$		51			ns
Latch pulse rise to Shift clock rise time	$\mathrm{t}_{\mathrm{L}} \mathrm{s}$		51			ns
Latch pulse fall to Shift pulse fall time	$\mathrm{t}_{\mathrm{LH}}$		51			ns
Input signal rise time *2	$\mathrm{t}_{\text {r }}$				50	ns
Input signal fall time *2	$t_{1}$				50	ns
Enable setup time	$\mathrm{t}_{\mathrm{s}}$		36			ns
DISPOFF removal time	$\mathrm{tso}^{\text {d }}$		100			ns
DISPOFF "L" pulse width	twdi		1.2			$\mu \mathrm{s}$
Output delay time (1)	$\mathrm{t}_{\mathrm{D}}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			78	ns
Output delay time (2)	$t_{p d 1}, t_{p d 2}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			1.2	$\mu \mathrm{s}$
Output delay time (3)	$\mathrm{t}_{\mathrm{pd} 3}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			1.2	$\mu \mathrm{s}$

## 【Note】

*1 Take the cascade connection into consideration.


SHARP
(Timing characteristics of Segment Mode)

(*) $n$ : 4-bit parallel mode 40 8 -bit parallel mode 20

(Common Mode)
$\left(\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+2.5\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{0}=+15.0$ to $+42.0 \mathrm{~V}, \mathrm{Ta}=-20$ to $\left.+85 \mathrm{C}\right)$

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Shift clock period	$\mathrm{t}_{\text {wLP }}$	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}, \leq 20 \mathrm{~ns}$	250			ns
Shift clock "H" pulse width	twlph	$\mathrm{V}_{\text {D }}=+5.0 \quad \mathrm{~V} \pm 10 \%$	15			ns
		$\mathrm{V}_{\mathrm{DD}}=+2.5 \mathrm{~V} \sim+4.5 \mathrm{~V}$	30			ns
Data setup time	$\mathrm{tsu}_{\mathrm{s}}$		30			ns
Data hold time	$\mathrm{t}_{\mathrm{H}}$		50			ns
Input signal rise time	$t_{r}$				50	ns
Input signal fall time	$t_{1}$				50	ns
DISPOFF removal time	$t_{50}$		100			ns
DISPOFF "L" pulse width	$\mathrm{t}_{\text {wDL }}$		1.2			$\mu \mathrm{s}$
Output delay time(1)	$t_{D L}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			200	ns
Output delay time(2)	$t_{p d 1}, t_{p d 2}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			1.2	$\mu \mathrm{s}$
Output delay time(3)	$t_{\text {D }{ }^{\text {d }} \text { }}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			1.2	$\mu \mathrm{s}$

(Timing Characteristics of Common Mode)

12. Example of System Configuration


## SHARP

13. Example of Typical Characteristic

Parameter	Conditions	Min.	Typ.	Max.	Unit
Typical Fundamental Rating Propagation Delay Time	Ta $=+25 \mathrm{C}, \mathrm{V}_{s \mathrm{~s}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+5.0 \mathrm{~V}$		10		ns

## SHARP

LHI560F

## 14. PACKAGE AND PACKING SPECIFICATION

1. Package Outline Specification

Refer to drawing No. SPN3321-00
2. Markings

The meanings of the device code printed on each tape carrier package are as follows.
(1) Date code (example) : $\frac{4}{\text { a) }} \frac{43}{\text { b) }} \frac{0}{\text { c) }}$
a) denotes the last figure of Anno Domini (of production)
b) denotes the week (of production)
c) denotes the number of times of alteration
3. Packing Specifications
(1) Packing Materials

Item	Material	Purpose
Reel	Anti-static treated plastic   $(405 \mathrm{~mm}$ dia. $)$	Packing of tape carrier   package.
Separator	Anti-static treated PET   $(188 \mu \mathrm{mt})$	Protects device and prevents   ESD (Electro Static Discharge) $)$
Laminated aluminium bag	$(520 \times 600 \mathrm{~mm})$	Keeping dry.
Adhesive tape paper		Fixing of tape carrier package   and sparator.
Carton	Cardboard $(420 \times 420 \times 50 \mathrm{~mm})$	Contains a reel.
Label	Paper	Indicates production name,   lot.No., and quantity.
Desiccant	Silica gel	Drying of device

(2) Packing Form
a) Tape carrier package(TCP)is wound on a reel with separators 1 and 2 and the ends of them are fixed with adhesive tape.
b) A label indicating production name, lot no. and quantity is stuck on one side of the reel.
c) The reel and silica gel is put in a laminated aluminium bag. Nitrogen gas is enclosed in the bag and the bag is sealed. The same label(b) is affixed to the bag. The bag is put
 in a carton and the same label(b) is affixed to one side of the carton.
4. Miscellaneous
(1) The length of the tape carrier is $34 \sim 46$ meters maximum per reel, and depends on shipping quantity.
(2) Before unpacking, prepare a work bench equipped with anti-static devices. Also, the operater shoud ware anti-static wrist bands.
(3) The device, once unpacked, should be stored in a nitrogen gas, room temperature atomosphere and used within 1 week.

ISSUE DATE	OCT.25.1994	APROVE	CHECK	DESIGN	(NOTE)
ISSUE NUMBER	H6X01	A. Sumuki			
S/C NUMBER					



