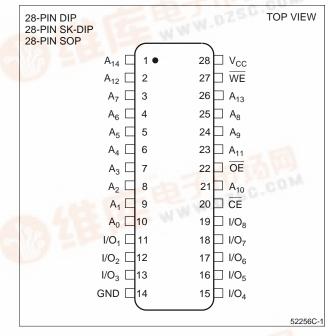
查询LH52256C供应商

捷多邦,专业PCB打样工厂,24小时加急出货

LH52256C/CH

CMOS 256K (32K \times 8) Static RAM


FEATURES

- 32,768 × 8 bit organization
- Access time: 70 ns (MAX.)
- Supply current: Operating: 45 mA (MAX.)
 10 mA (MAX.) (t_{RC}, t_{WC} = 1 μs)
 Standby: 40 μA (MAX.)
- Data retention current: 1.0 μ A (MAX.) (V_{CCDR} = 3 V, T_A = 25°C)
- Wide operating voltage range: 4.5 V \pm 5.5 V
- Operating temperature: Commerical temperature 0°C to +70°C
 Industrial temperature -40° to +85°C
- Fully-static operation
- Three-state outputs
- Not designed or rated as radiation hardened
- Package: 28-pin, 600-mil DIP 28-pin, 450-mil SOP 28-pin, 300-mil SK-DIP 28-pin, 8 × 3 mm² TSOP (Type I)
- N-type bulk silicon

DESCRIPTION

The LH52256C is a Static RAM organized as $32,768 \times 8$ bits which provides low-power standby mode. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

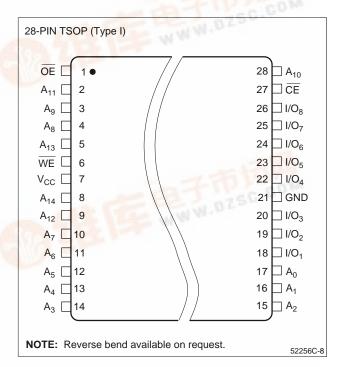


Figure 2. TSOP (Type I) Pin Connections

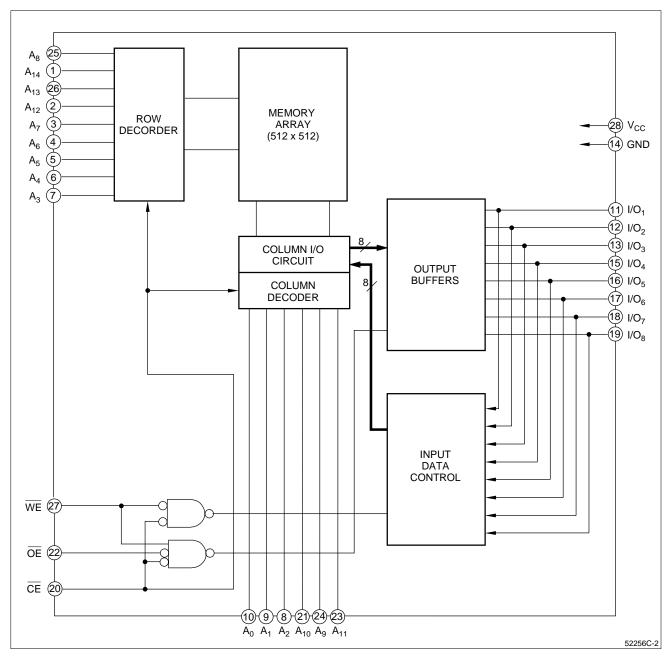


Figure 3. LH52256C Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
A ₀ - A ₁₄	Address inputs
CE	Chip enable
WE	Write enable
OE	Output enable

SIGNAL	PIN NAME
I/O ₁ - I/O ₈	Data inputs and outputs
Vcc	Power supply
GND	Ground

TRUTH TABLE

CE	WE	ŌĒ	MODE	I/O ₁ - I/O ₈	SUPPLY CURRENT	NOTE
Н	Х	Х	Standby	High impedance	Standby (I _{SB})	1
L	Н	L	Read	Data output	Active (I _{CC})	1
L	Н	Н	Output disable	High impedance	Active (I _{CC})	1
L	L	Х	Write	Data input	Active (I _{CC})	1

NOTE:

1. X = Don't care, L = Low, H = High

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	V _{CC}	-0.5 to +7.0	V	1
Input voltage	V _{IN}	–0.5 to V _{CC} + 0.5	V	1, 2
Operating temperature	T _{OPR}	0 to +70	°C	
Storage temperature	T _{STG}	-65 to +150	°C	

NOTES:

1. The maximum applicable voltage on any pin with respect to GND.

2. Undershoot of -3.0 V is allowed width of pulse below 50 ns.

RECOMMENDED DC OPERATING CONDITIONS (T_A = 0^{\circ}C to +70°C)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Supply voltage	V _{CC}	4.5	5.0	5.5	V	
Input voltage	Vih	2.2		V _{CC} + 0.5	V	
	VIL	-0.5		0.8	V	1

NOTE:

1. Undershoot of -3.0 V is allowed width of pulse below 50 ns.

DC ELECTRICAL CHARACTERISTICS (T_A = 0°C to +70°C, V_{CC} = 4.5 V to 5.5 V)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input leakage current	ILI	$V_{IN} = 0 V \text{ to } V_{CC}$	-1.0		1.0	μA
Output leakage current	I _{LO}	$\overrightarrow{CE} = V_{IH} \text{ or } \overrightarrow{OE} = V_{IH}$ $V_{I/O} = 0 \text{ V to } V_{CC}$	-1.0		1.0	μA
Operating supply current	Icc			25	45.0	mA
	I _{CC1}	$ \begin{array}{l} t_{RC}, t_{WC} = 1 \; \mu s, V_{IN} = V_{IL} \; or \; V_{IH}, \\ I_{I/O} = 0 \; mA, \; CE = V_{IL} \end{array} $			10.0	ША
Standby current	I _{SB}	$\overline{CE} \ge V_{CC} - 0.2 V$		0.6	40.0	μΑ
	I _{SB1}	CE = VIH			3.0	mA
Output voltage	V _{OL}	I _{OL} = 2.1 mA			0.4	V
Calpat Voltage	V _{OH}	I _{OH} = -1.0 mA	2.4			

NOTE:

Typical values at V_{CC} = 5.0 V, T_A = 25°C

AC ELECTRICAL CHARACTERISTICS AC Test Conditions

PARAMETER	MODE	NOTE
Input pulse level	0.6 V to 2.4 V	
Input rise and fall time	10 ns	
Input and output timing Ref. level	1.5 V	
Output load	1 TTL + C _L (100 pF)	1

NOTE:

1. Including scope and jig capacitance.

READ CYCLE (T_A = 0°C to +70°C, V_{CC} = 4.5 V to 5.5 V)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE
Read cycle time	t _{RC}	70		ns	
Address access time	t _{AA}		70	ns	
CE access time	t _{ACE}		70	ns	
Output enable to output valid	t _{OE}		35	ns	
Output hold from address change	tон	10		ns	
CE Low to output active	t _{LZ}	10		ns	1
OE Low to output active	toLZ	5		ns	1
CE High to output in High impedance	t _{HZ}	0	30	ns	1
OE High to output in High impedance	tонz	0	30	ns	1

NOTES:

 Active output to high-impedance and high-impedance to output active tests specified for a ±200 mV transition from steady state levels into the test load.

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE
Write cycle time	t _{WC}	70		ns	
CE Low to end of write	t _{CW}	45		ns	
Address valid to end of write	tAW	45		ns	
Address setup time	tAS	0		ns	
Write pulse width	twp	35		ns	—
Write recovery time	t _{WR}	0		ns	_
Input data setup time	t _{DW}	30		ns	
Input data hold time	t _{DH}	0		ns	
WE High to output active	tow	5		ns	1
WE Low to output in High impedance	t _{WZ}	0	30	ns	1
OE High to output in High impedance	tонz	0	30	ns	1

WRITE CYCLE (T_A = 0°C to +70°C, V_{CC} = 4.5 V to 5.5 V)

NOTE:

1. Active output to high-impedance and high-impedance to output active tests specified for a ±200 mV transition from steady state levels into the test load.

CAPACITANCE ($T_A = 25^{\circ}C$, f = 1MHz)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Input capacitance	C _{IN}	V _{IN} = 0 V			7	pF	1
I/O capacitance	C _{I/O}	$V_{I/O} = 0 V$			10	pF	1

NOTE:

1. This parameter is sampled and not production tested.

DATA RETENTION CHARACTERISTICS (T_A = 0°C to +70°C)

PARAMETER	SYMBOL	CONDITIONS		MIN.	TYP.	MAX.	UNIT	NOTE	
Data retention supply voltage	V _{CCDR}	$\overline{CE} \ge V_{CCDR} - 0.2 V$		2.0		5.5	V		
		V _{CCDR} = 3.0 V	T _A = 25°C		0.3	1.0			
Data retention supply current	ICCDR			TA = 40°C			3.0	μA	
		$\overline{CE} \ge V_{CCDR} - 0.2 V$				15			
Chip enable setup time	t _{CDR}			0			ns		
Chip enable hold time	t _R			t _{RC}			ns	1	

NOTE:

1. t_{RC} = Read cycle time.

2. Typical values at $T_A = 25^{\circ}C$

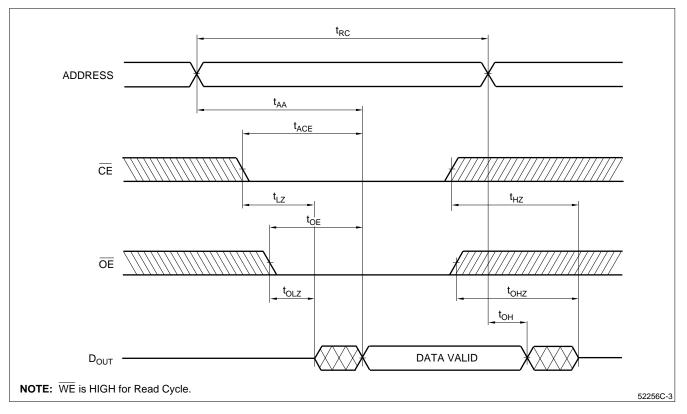


Figure 4. Read Cycle

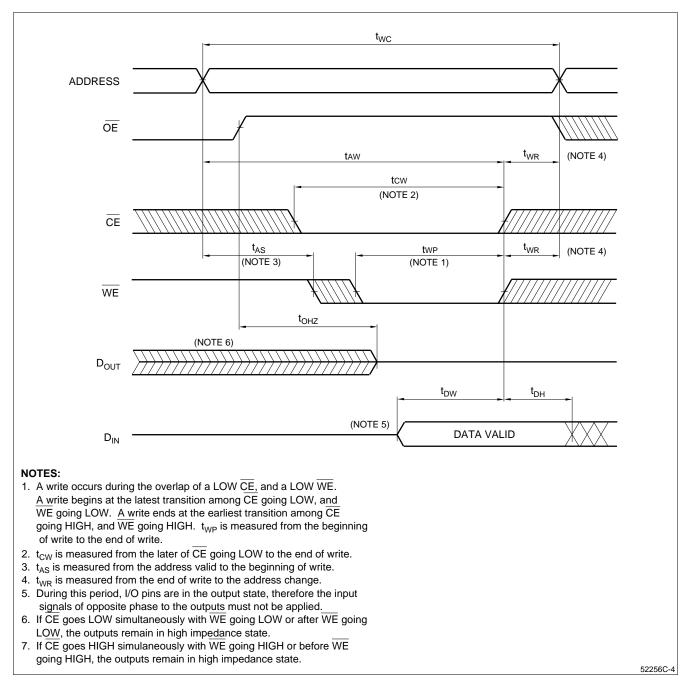
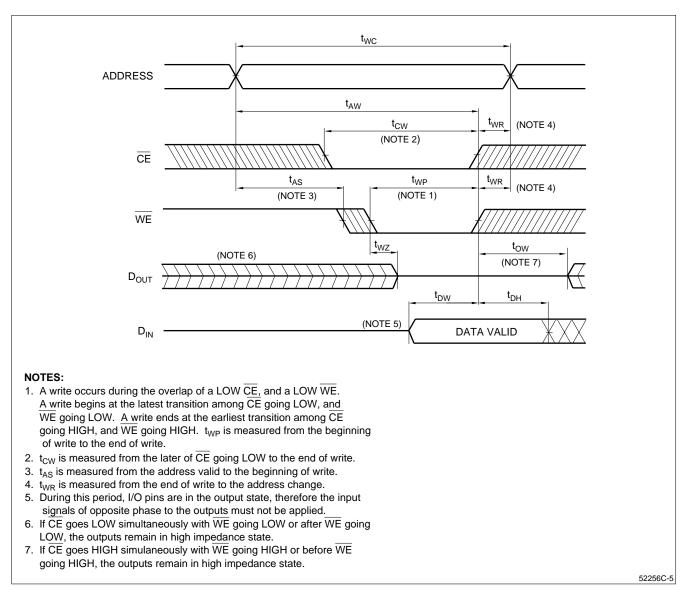
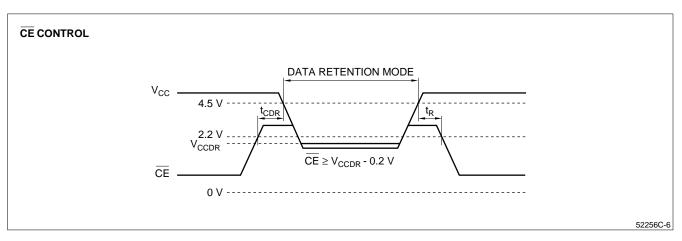
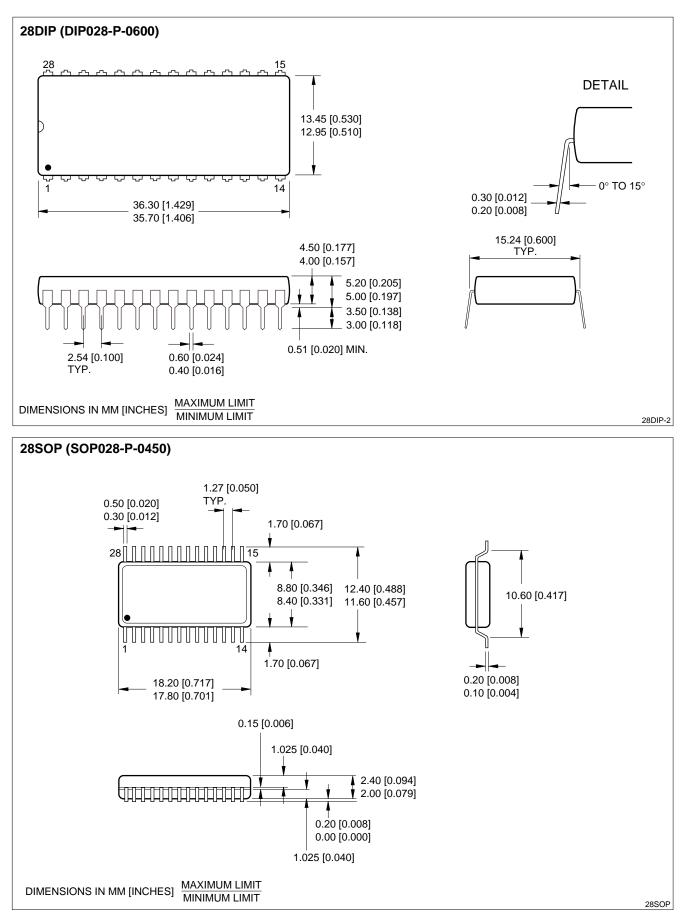
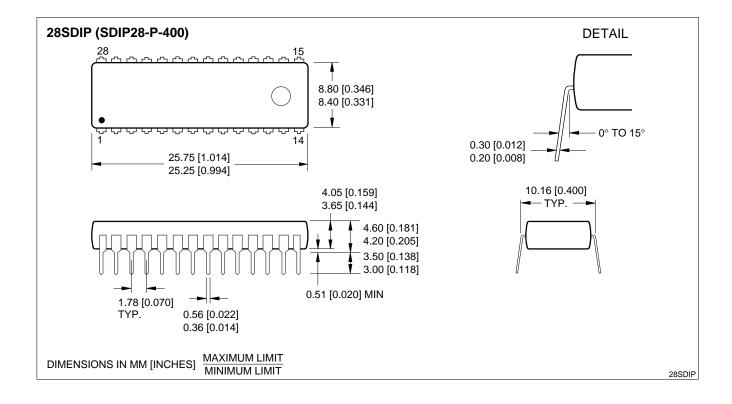
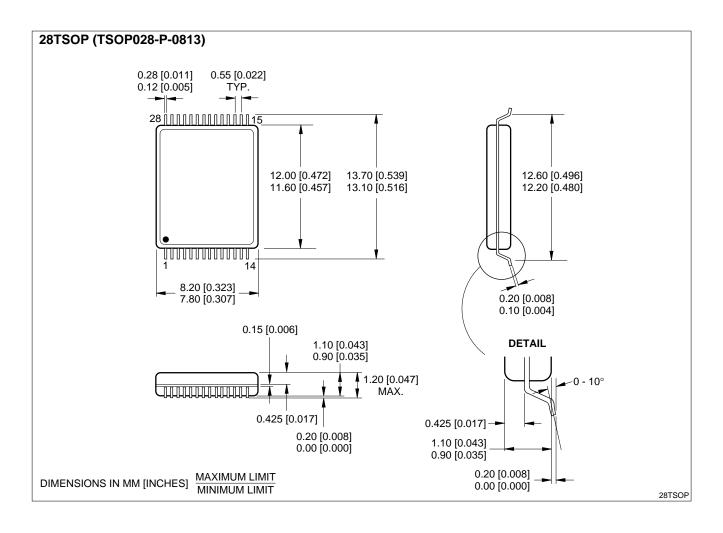




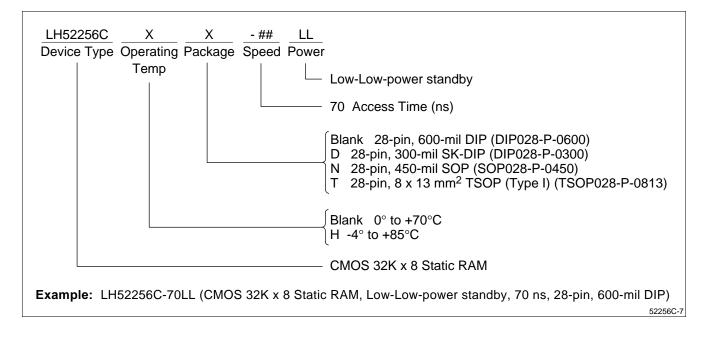
Figure 5. Write Cycle (OE Controlled)




Figure 6. Write Cycle (OE Low Fixed)



Data Retention Timing Chart CE Controlled


PACKAGE DIAGRAMS

ORDERING INFORMATION

