查询CY62157CV18供应商

捷多邦,专业PCB打样工厂,24小时加急出货

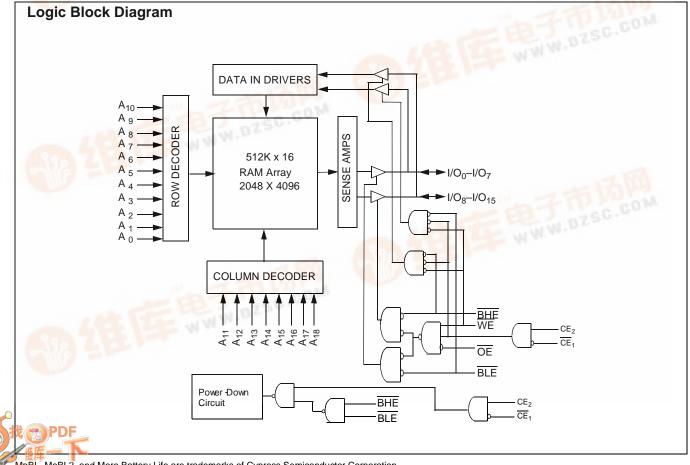
CY62157CV18 MoBL2™

512K x 16 Static RAM

Features

- High Speed
 - 55 ns and 70 ns availability
- Low voltage range: — CY62157CV18: 1.65V–1.95V
- Ultra-low active power
 - Typical Active Current: 0.5 mA @ f = 1 MHz
 - Typical Active Current: 4 mA @ f = f_{max} (70 ns speed)
- Low standby power
- Easy memory expansion with \overline{CE}_1 , CE_2 and \overline{OE} features
- Automatic power-down when deselected
- CMOS for optimum speed/power

Functional Description

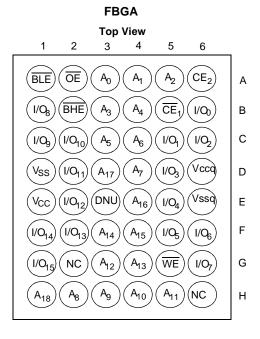

The CY62157CV18 is a high-performance CMOS static RAM organized as 512K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life[™] (MoBL[™]) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling.

The <u>device</u> can also be put into standby mode when deselected (\overline{CE}_1 HIGH or \overline{CE}_2 LOW or both BHE and BLE are HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected (\overline{CE}_1 HIGH or \overline{CE}_2 LOW), outputs are disabled (\overline{OE} HIGH), both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH), or during a write operation (\overline{CE}_1 LOW, CE₂ HIGH and WE LOW).

Writing to the device is accomplished by taking Chip Enables $(\overline{CE}_1 \text{ LOW} \text{ and } CE_2 \text{ HIGH})$ and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified on the address pins (A₀ through A₁₈). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through address pins (A₀ through A₁₈).

Reading from the device is accomplished by taking Chip Enable ($\overline{CE}_1 \text{ LOW}$ and $\overline{CE}_2 \text{ HIGH}$) and Output Enable (\overline{OE}) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the truth table at the back of this datasheet for a complete description of read and write modes.

The CY62157CV18 is available in a 48-ball FBGA package.


MOBL MOBL2, and More Battery Life are trademarks of Cypress Semiconductor Corporation.

Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600

CY62157CV18 MoBL2™

Pin Configuration^[1, 2]

Maximum Ratings

(Above which the useful life may be impaired. For user guide-lines, not tested.)
Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage to Ground Potential0.2V to +2.4V

DC Voltage Applied to Outputs in High 7 State^{[3}......]-0.2V to $V_{CC} + 0.2V$

In High Z State	-0.20 to $V_{CC} + 0.20$
DC Input Voltage ^[3]	0.2V to V _{CC} + 0.2V
Output Current into Outputs (LOW).	20 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Device	Range	Ambient Temperature	V _{CC}
CY62157CV18	Industrial	–40°C to +85°C	1.65V to 1.95V

Product Portfolio

					Power Dissipation (Indu				strial)	
					Operating (I _{CC})					
	V _{CC} Range				f = 1	f = 1 MHz f = f _{max}			Standb	y (I _{SB2})
Product	Min.	Typ. ^[4]	Max.	Speed	Typ . ^[4]	Max.	Typ. ^[4]	Max.	Typ. ^[4]	Max.
CY62157CV18	1.65V	1.8V	1.95V	55 ns	0.5 mA	3 mA	5 mA	15 mA	1.5 μA	20 µA
				70 ns	0.5 mA	3 mA	4 mA	12 mA		

Notes:

NC pins are not connected to the die.
 E3 (DNU) can be left as NC or V_{SS} to ensure proper application.
 V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

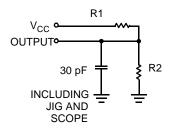
				CY6	2157CV	18-55	CY6			
Parameter	Description	Test Con	ditions	Min.	Typ. ^[4]	Max.	Min.	Typ. ^[4]	Max.	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -0.1 mA	$V_{\rm CC} = 1.65 V$	1.4			1.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA	$V_{\rm CC} = 1.65 V$			0.2			0.2	V
V _{IH}	Input HIGH Voltage			1.4		V _{CC} +0.2V	1.4		V _{CC} +0.2V	V
V _{IL}	Input LOW Voltage			-0.2		0.4	-0.2		0.4	V
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$	-1		+1	-1		+1	μΑ	
I _{OZ}	Output Leakage Current	$GND \leq V_{O} \leq V_{CC}, C$	-1		+1	-1		+1	μΑ	
	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = 1.95V$		5	15		4	12	mA
ICC	Current	f = 1 MHz	I _{OUT} = 0 mA CMOS levels		0.5	3		0.5	3	mA
I _{SB1}	Automatic CE Power-DownCurrent— CMOS Inputs	$\label{eq:cell} \begin{array}{l} \overline{CE}_1 \geq V_{CC} - 0.2V, \ CE_{2} \leq 0.2V \\ V_{IN} \geq V_{CC} - 0.2V, \ V_{IN} \leq 0.2V) \\ f = f_{MAX} (Address and Data Only), \\ f = 0 (OE, \ WE, \ BHE, \ and \ BLE) \end{array}$			1.5	20		1.5	20	μΑ
I _{SB2}	Automatic CE Power-DownCurrent— CMOS Inputs		or V _{IN} <u><</u> 0.2V,							

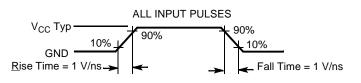
Electrical Characteristics Over the Operating Range

Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

Thermal Resistance

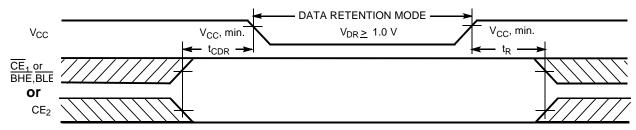

Description	Test Conditions	Symbol	BGA	Unit
Thermal Resistance (Junction to Ambient) ^[5]	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	Θ_{JA}	55	°C/W
Thermal Resistance (Junction to Case) ^[5]		Θ_{JC}	16	°C/W


Note:

5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

THÉVENIN EQUIVALENT Equivalent to:


> R_{TH} OUTPUT -**__o** V

Parameters	1.8V	Unit
R1	13500	Ohms
R2	10800	Ohms
R _{TH}	6000	Ohms
V _{TH}	0.80	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions	Min.	Typ. ^[4]	Max.	Unit
V _{DR}	V _{CC} for Data Retention		1.0		1.95	V
I _{CCDR}	Data Retention Current	$\begin{array}{l} \frac{V_{CC}}{CE_{1} \geq V_{CC}} - 0.2V, CE_{2} \leq 0.2V, \\ V_{IN} \geq V_{CC} - 0.2V \text{ or } V_{IN} \leq 0.2V \end{array}$		1	10	μΑ
t _{CDR} ^[5]	Chip Deselect to Data Retention Time		0			ns
t _R ^[6]	Operation Recovery Time		t _{RC}			ns

Data Retention Waveform^[7]

Notes:

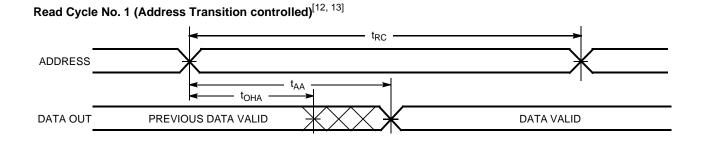
- <u>Full Device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} ≥ 100 us or stable at V_{CC(min.)} ≥ 100 µs.
 BHE.BLE is the AND of both BHE and BLE. Chip can be deselected by either disabling the chip enable signals or by disabling both BHE and BLE.
 </u>

CY62157CV18 MoBL2™

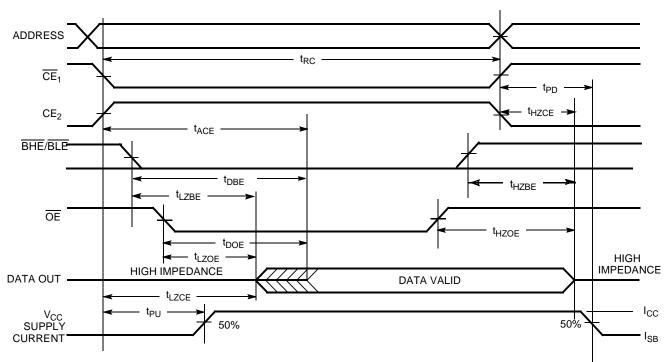
Switching Characteristics Over the Operating Range^[8]

		55	5 ns	70		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
READ CYCLE				1		
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	\overline{CE}_1 LOW and CE_2 HIGH to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low Z ^[9]	5		5		ns
t _{HZOE}	OE HIGH to High Z ^[9, 10]		20		25	ns
t _{LZCE}	\overline{CE}_1 LOW and CE_2 HIGH to Low Z ^[9]	10		10		ns
t _{HZCE}	\overline{CE}_1 HIGH and CE_2 LOW to High $Z^{[9, 10]}$		20		25	ns
t _{PU}	\overline{CE}_1 LOW and CE_2 HIGH to Power-Up	0		0		ns
t _{PD}	\overline{CE}_1 HIGH and CE_2 LOW to Power-Down		55		70	ns
t _{DBE}	BLE / BHE LOW to Data Valid		55		70	ns
t _{LZBE}	BLE / BHE LOW to Low Z ^[9]	5		5		ns
t _{HZBE}	BLE / BHE HIGH to HIGH Z ^[9, 10]		20		25	ns
WRITE CYCLE ^[11]				1	1	-
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	\overline{CE}_1 LOW and CE_2 HIGH to Write End	45		60		ns
t _{AW}	Address Set-Up to Write End	45		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	45		50		ns
t _{BW}	BLE / BHE LOW to Write End	45		60		ns
t _{SD}	Data Set-Up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High Z ^[9, 10]		20		25	ns
t _{LZWE}	WE HIGH to Low Z ^[9]	5		10		ns

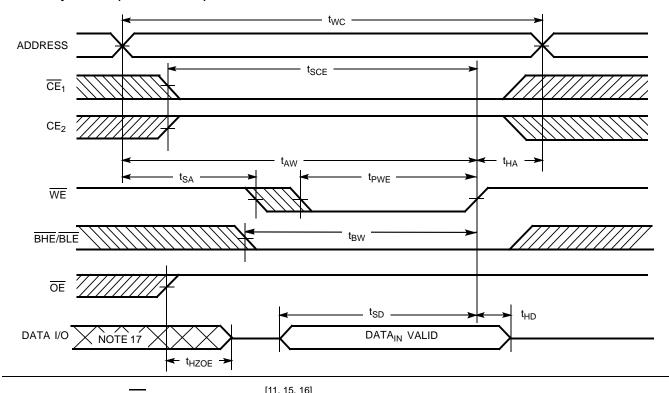
Notes:

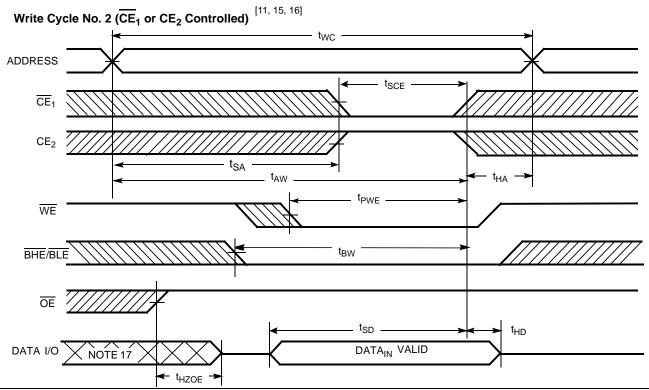

Test conditions assume signal transition time of 3 ns or less, timing reference levels of $V_{CC(typ)}/2$, input pulse levels of 0 to $V_{CC(typ.)}$, and output loading of the specified I_{0L}/I_{OH} and 30-pF load capacitance. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZBE} is less than t_{LZBE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given device 8.


9.


given device
t_{HZOE}, t_{HZDE}, t_{HZEE}, and t_{HZWE} transitions are measured when the outputs enter a high impedance state.
10. t_{HZOE}, t_{HZDE}, t_{HZDE}, t_{HZDE}, t_{HZDE}, transitions are measured when the outputs enter a high impedance state.
11. The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE and/or BLE = V_{IL}, CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.

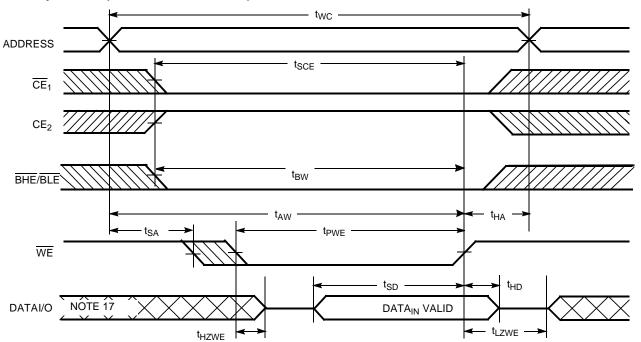
Switching Waveforms


Notes:


12. Device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, \overline{BHE} and/or $\overline{BLE} = V_{IL}$, $CE_2 = V_{IH}$. 13. WE is HIGH for read cycle. 14. Address valid prior to or coincident with \overline{CE}_1 , \overline{BHE} , \overline{BLE} transition LOW and CE_2 transition HIGH.

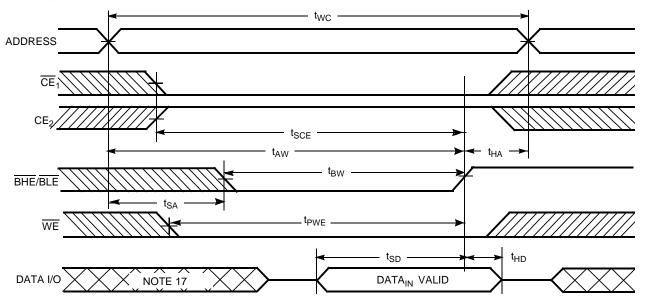
Switching Waveforms (continued)

Write Cycle No. 1(WE Controlled) [11, 15, 16]



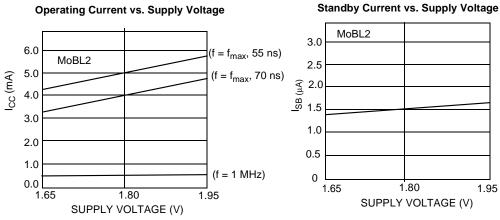
Notes:

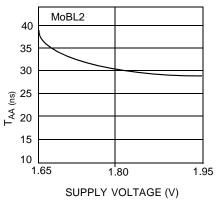
15. Data I/O is high impedance if $\overline{OE} = V_{IH}$. 16. If \overline{CE}_1 goes HIGH and CE_2 goes LOW simultaneously with $\overline{WE} = V_{IH}$, the output remains in a high-impedance state. 17. During this period, the I/Os are in output state and input signals should not be applied.


Switching Waveforms (continued)

CY62157CV18 MoBL2™

Write Cycle No. 3 (WE Controlled, $\overline{OE} LOW$)^[16]


Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)^[16]

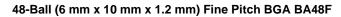

Typical DC and AC Characteristics

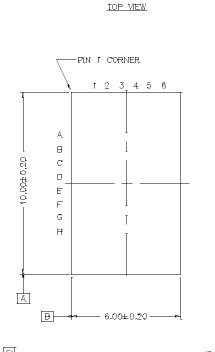
(Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ.)}$, $T_A = 25^{\circ}C$)

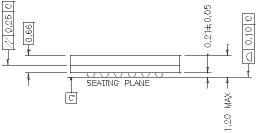
Access Time vs. Supply Voltage

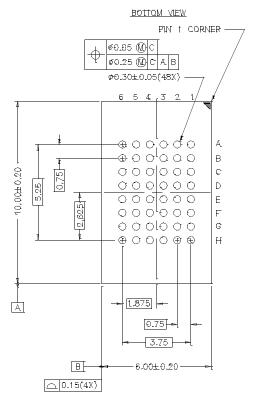
Truth Table

CE ₁	CE ₂	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
Х	L	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
Х	Х	Х	Х	Н	Н	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	Н	L	L	L	Data Out (I/O0–I/O15)	Read	Active (I _{CC})
L	Н	Н	L	Н	L	Data Out (I/O0–I/O7); High Z (I/O8–I/O15)	Read	Active (I _{CC})
L	Н	Н	L	L	Н	High Z (I/O0–I/O7); Data Out (I/O8–I/O15)	Read	Active (I _{CC})
L	Н	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
L	Н	L	Х	L	L	Data In (I/O0–I/O15)	Write	Active (I _{CC})
L	Н	L	Х	Н	L	Data In (I/O0–I/O7); High Z (I/O8–I/O15)	Write	Active (I _{CC})
L	Н	L	Х	L	Η	High Z (I/O0–I/O7); Data In (I/O8–I/O15)	Write	Active (I _{CC})




CY62157CV18 MoBL2™


Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CY62157CV18LL-55BAI	BA48F	48-Ball Fine Pitch BGA	Industrial
70	CY62157CV18LL-70BAI			

Package Diagram

51-85128-*A

Document Title:CY62157CV18 MoBL2™ 512K x 16 Static RAM Document Number: 38-05012

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	106158	04/06/01	MGN	New Data Sheet, replaces CY62157BV18.
*A	107242	07/31/01	MGN	Changing from Preliminary to Final.
*В	109231	08/31/01	MGN	Add comment on front page about Active Current at different frequencies.
*C	110574	11/02/01	MGN	Improved t _{DOE} from 35 ns to 25 ns (@55 ns). Added Typical DC & AC Characteristics. Format standardization