Schottky Diodes

MiniMELF

Dimensions in inches and（millimeters）

FEATURES

－For general purpose applications．
－This diode features low turn－on voltage and high breakdown volt－ age．These devices are protected by a PN junction guard ring against excessive voltage，such as electrostatic discharges．
－This diode is also available in the DO－35 case with type designation BAT41．

MECHANICAL DATA
Case：MiniMELF Glass Case（SOD－80）
Weight：approx． 0.05 g

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at $25^{\circ} \mathrm{C}$ ambient temperature unless otherwise specified

	Symbol	Value	Unit
Repetitive Peak Reverse Voltage	$\mathrm{V}_{\text {RRM }}$	100	V
Forward Continuous Current at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	I_{F}	$100^{1)}$	mA
Repetitive Peak Forward Current at $\mathrm{t}_{\mathrm{p}}<1 \mathrm{~s}, @<0.5, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\text {FRM }}$	$350^{1)}$	mA
Surge Forward Current at $\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}, \mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\text {SFM }}$	$750^{1)}$	mA
Power Dissipation， $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	$400^{1)}$	mW
Junction Temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$
Ambient Operating Temperature Range	$\mathrm{T}_{\text {amb }}$	-65 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	T_{S}	$-65 \mathrm{to}+150$	${ }^{\circ} \mathrm{C}$
1）Valid provided that electrodes are kept at ambient temperature．			

LL41

ELECTRICAL CHARACTERISTICS

Ratings at $25^{\circ} \mathrm{C}$ ambient temperature unless otherwise specified

Test Conditions	Symbol	Min.	Typ.	Max.	Unit
Reverse Breakdown Voltage tested with $100 \mu \mathrm{~A} / 300 \mu \mathrm{~s}$ Pulses	$\mathrm{V}_{(\mathrm{BR}) \mathrm{R}}$	100	110	-	V
Forward Voltage Pulse Test $t_{p}=300 \mu \mathrm{~s}$ at $\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$ at $I_{F}=200 \mathrm{~mA}$	$\begin{aligned} & V_{F} \\ & V_{F} \end{aligned}$	-	0.40 -	$\begin{aligned} & 0.45 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Leakage Current Pulse Test $\mathrm{t}_{\mathrm{p}}=300 \mu \mathrm{~s}$ at $\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$, at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ at $\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$, at $\mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$	$\begin{aligned} & I_{R} \\ & I_{R} \end{aligned}$	-	-	$\begin{array}{r} 100 \\ 20 \end{array}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$
Capacitance at $\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {tot }}$	-	2	-	pF
Reverse Recovery Time from $I_{F}=10 \mathrm{~mA}$, to $\mathrm{I}_{\mathrm{R}}=10 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$ $\mathrm{R}_{\mathrm{L}}=100 \mathrm{Ohm}$	t_{rr}	-	5	-	ns
Thermal Resistance Junction to Ambient Air	$\mathrm{R}_{\text {thJA }}$	-	-	$300{ }^{1)}$	K/W
${ }^{1)}$ Valid provided that electrodes are kept at ambient temperature.					

