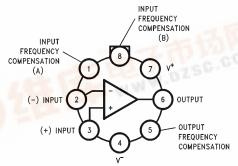


February 1995

LM709 Operational Amplifier

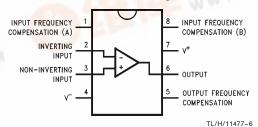
General Description


The LM709 series is a monolithic operational amplifier intended for general-purpose applications. Operation is completely specified over the range of voltages commonly used for these devices. The design, in addition to providing high gain, minimizes both offset voltage and bias currents. Further, the class-B output stage gives a large output capability with minimum power drain.

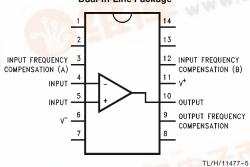
External components are used to frequency compensate the amplifier. Although the unity-gain compensation network specified will make the amplifier unconditionally stable in all feedback configurations, compensation can be tailored to optimize high-frequency performance for any gain setting.

The LM709C is the commercial-industrial version of the LM709. It is identical to the LM709 except that it is specified for operation from 0°C to +70°C.

Connection Diagrams


Metal Can Package

TL/H/11477-4


Order Number LM709AH, LM709H or LM709CH See NS Package Number H08C

Dual-In-Line Package

Order Number LM709CN-8 See NS Package Number N08E

Dual-In-Line Package

Order Number LM709CN See NS Package Number N14A

TL/H/11477

RRD-B30M115/Printed in U. S. A.

Absolute Maximum Ratings (Note 3)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage

LM709/LM709A/LM709C $\pm 18V$

Power Dissipation (Note 1)

LM709/LM709A 300 mW LM709C 250 mW

Differential Input Voltage

LM709/LM709A/LM709C $\pm\,5V$

Input Voltage

LM709/LM709A/LM709C $\pm\,10V$

Output Short-Circuit Duration ($T_A = +25^{\circ}C$)

Storage Temperature Range LM709/LM709A/LM709C

-65°C to +150°C

Lead Temperature (Soldering, 10 sec.) LM709/LM709A/LM709C

300°C

Operating Ratings (Note 3)

Junction Temperature Range (Note 1)

LM709/LM709A -55°C to +150°C 0°C to +100°C

LM709C

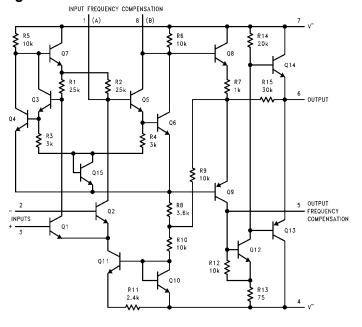
Thermal Resistance (θ_{JA})

H Package 8-Pin N Package 14-Pin N Package 150°C/W, (θ_{JC}) 45°C/W .. 134°C/W

109°C/W

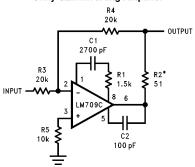
LM709/LM709A/LM709C 5 seconds

Electrical Characteristics (Note 2)

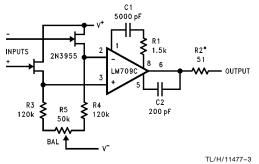

Parameter	Conditions	LM709A			LM709			LM709C			Unite
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	$T_{A}=$ 25°C, $R_{S}\leq$ 10 k Ω		0.6	2.0		1.0	5.0		2.0	7.5	mV
Input Bias Current	$T_A = 25^{\circ}C$		100	200		200	500		300	1500	nA
Input Offset Current	$T_A = 25^{\circ}C$		10	50		50	200		100	500	nA
Input Resistance	$T_A = 25^{\circ}C$	350	700		150	400		50	250		kΩ
Output Resistance	$T_A = 25^{\circ}C$		150			150			150		Ω
Supply Current	$T_A = 25^{\circ}C, V_S = \pm 15V$		2.5	3.6		2.6	5.5		2.6	6.6	mA
Transient Response Risetime Overshoot	$\begin{aligned} &V_{\text{IN}} = 20 \text{ mV, } C_{\text{L}} \leq 100 \text{ pF} \\ &T_{\text{A}} = 25^{\circ}\text{C} \end{aligned}$			1.5 30		0.3 10	1.0 30		0.3 10	1.0 30	μs %
Slew Rate	$T_A = 25^{\circ}C$		0.25			0.25			0.25		V/µs
Input Offset Voltage	$R_S \leq 10 k\Omega$			3.0			6.0			10	mV
Average Temperature Coefficient of Input Offset Voltage	$\begin{split} R_S = 50\Omega & T_A = 25^\circ\text{C to T}_{MAX} \\ T_A = 25^\circ\text{C to T}_{MIN} \\ R_S = 10 \text{ k}\Omega & T_A = 25^\circ\text{C to T}_{MAX} \\ T_A = 25^\circ\text{C to T}_{MIN} \end{split}$		1.8 1.8 2.0 4.8	10 10 15 25		3.0 6.0			6.0 12		μV/°C
Large Signal Voltage Gain	$V_S = \pm 15 V, R_L \ge 2 k\Omega$ $V_{OUT} = \pm 10 V$	25		70	25	45	70	15	45		V/mV
Output Voltage Swing	$\begin{aligned} V_S &= \pm 15 V, R_L = 10 \text{ k}\Omega \\ V_S &= \pm 15 V, R_L = 2 \text{ k}\Omega \end{aligned}$	±12 ±10	±14 ±13		±12 ±10	±14 ±13		±12 ±10	±14 ±13		V
Input Voltage Range	$V_S = \pm 15V$	±8			±8	±10		±8	±10		V
Common-Mode Rejection Ratio	$R_S \le 10k\Omega$	80	110		70	90		65	90		dB
Supply Voltage Rejection Ratio	$R_S \le 10 \text{ k}\Omega$		40	100		25	150		25	200	μV/V
Input Offset Current	$\begin{aligned} T_{A} &= T_{MAX} \\ T_{A} &= T_{MIN} \end{aligned}$		3.5 40	50 250		20 100	200 500		75 125	400 750	nA
Input Bias Current	$T_A = T_{MIN}$		0.3	0.6		0.5	1.5		0.36	2.0	μΑ
Input Resistance	$T_A = T_{MIN}$	85	170		40	100		50	250		kΩ

Note 1: For operating at elevated temperatures, the device must be derated based on a 150°C maximum junction temperature for LM709/LM709A and 100°C maximum for L709C. For operating at elevated temperatures, the device must be derated based on thermal resistance θ_{JA} , $T_{J(MAX)}$ and T_{A} .

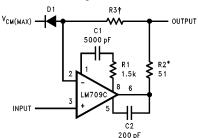
Note 2: These specifications apply for $-55^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$ for the LM709/LM709A and $0^{\circ}\text{C} \le T_{A} \le +70^{\circ}\text{C}$ for the LM709C with the following conditions: $\pm\,9V\,\leq\,V_{\mbox{\scriptsize S}}\,\leq\,\pm\,15V,\,C1\,=\,5000$ pF, R1 $\,=\,$ 1.5 k $\Omega,\,C2\,=\,200$ pF and R2 $\,=\,51\Omega.$


Note 3: Absolute Maximum Ratings indicate limits which if exceeded may result in damage. Operating Ratings are conditions where the device is expected to be functional but not necessarily within the guaranteed performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.

Schematic Diagram**

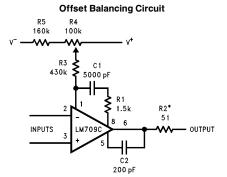

Typical Applications**

Unity Gain Inverting Amplifier

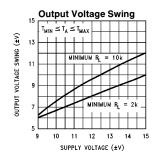


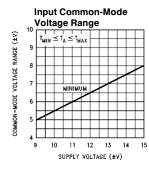
TL/H/11477-2

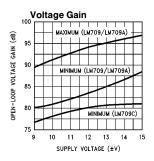
FET Operational Amplifier

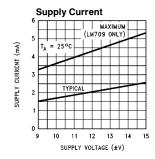

Voltage Follower

 $\ensuremath{^{*}\text{To}}$ be used with any capacitive loading on output.

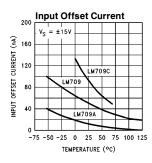

**Pin connections shown are for metal can package. \dagger Should be equal to DC source resistance on input.

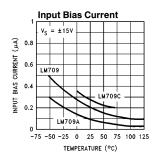

TL/H/11477-7

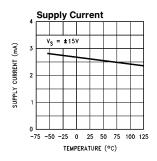


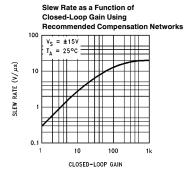

TL/H/11477-8

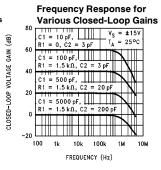
Guaranteed Performance Characteristics

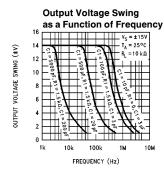


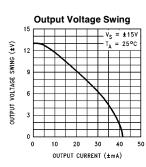


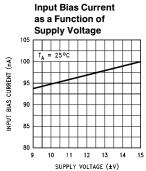


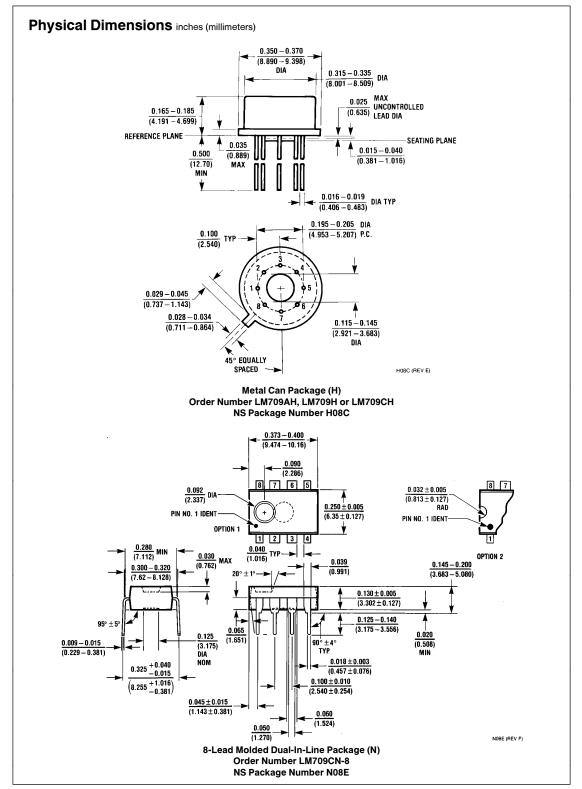

TL/H/11477-9

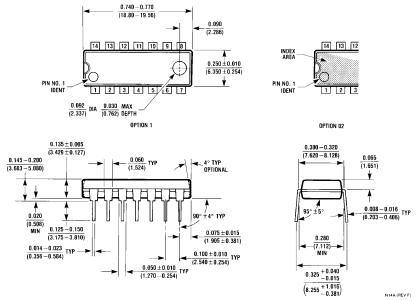

Typical Performance Characteristics











TL/H/11477-10

Physical Dimensions inches (millimeters) (Continued)

14-Lead Molded Dual-In-Line Package (N) Order Number LM709CN NS Package Number N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408