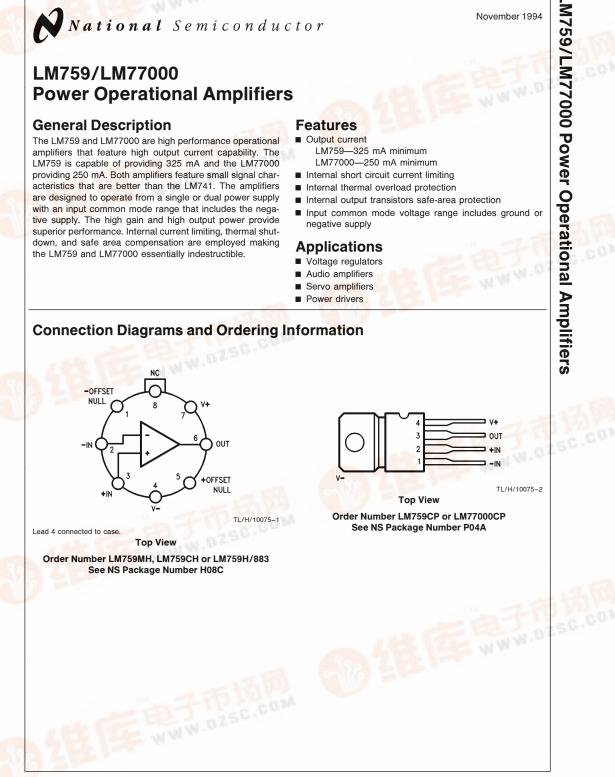


November 1994

National Semiconductor

LM759/LM77000 **Power Operational Amplifiers**

General Description


The LM759 and LM77000 are high performance operational amplifiers that feature high output current capability. The LM759 is capable of providing 325 mA and the LM77000 providing 250 mA. Both amplifiers feature small signal characteristics that are better than the LM741. The amplifiers are designed to operate from a single or dual power supply with an input common mode range that includes the negative supply. The high gain and high output power provide superior performance. Internal current limiting, thermal shutdown, and safe area compensation are employed making the LM759 and LM77000 essentially indestructible.

Features

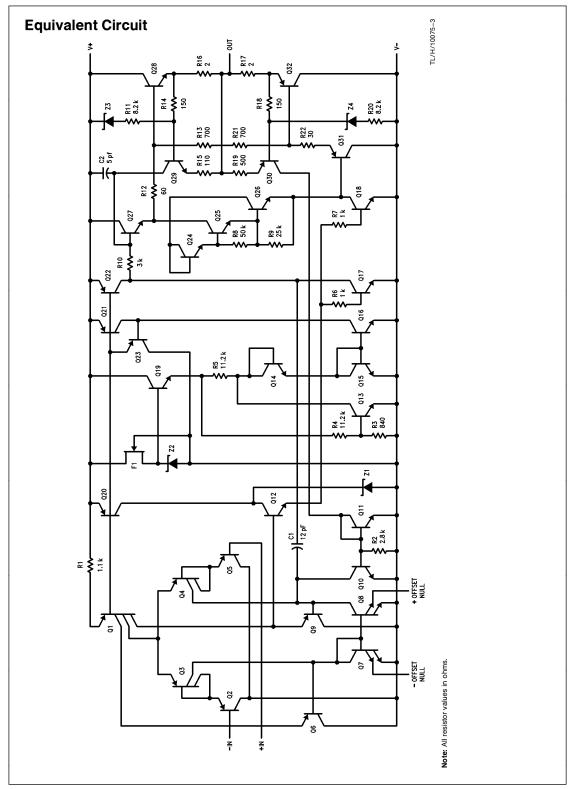
- Output current LM759-325 mA minimum LM77000-250 mA minimum
- Internal short circuit current limiting
- Internal thermal overload protection
- Internal output transistors safe-area protection
- Input common mode voltage range includes ground or negative supply

Applications

- Voltage regulators
- Audio amplifiers
- Servo amplifiers
- Power drivers

© 1995 National Semiconductor Corporation TL/H/10075 RRD-B30M115/Printed in U. S. A.

Office/D Storage Metal (Plastic Operatiny Military Comm Lead Ter Metal (Plastic	Package g Junction Temperature / (LM759M) ercial (LM759C, LM770 mperature Can (soldering, 60 sec) Package (soldering, 10	al Semicond bility and spe -65 -65 e Range -55 00C) 0	luctor Sales S cifications. D ℃ to + 175°C ℃ to + 150°C °C to + 150°C °C to + 125°C 300°C 265°C	upply Voltage ifferential Input Voltage put Voltage (note 2)		ernally L	± 18V 30V ± 15V
Symbol	Paramete		Conditions	Min	Тур	Мах	Units
V _{IO}	Input Offset Voltage	•	$R_{S} \le 10 \text{ k}\Omega$		1.0	3.0	mV
lio	Input Offset Current				5.0	30	nA
IIB	Input Bias Current				50	150	nA
ZI	Input Impedance			0.25	1.5		MΩ
Icc	Supply Current				12	18	mA
VIR	Input Voltage Range			V+ - 2V to V-	V ⁺ - 2V to V ⁻		V
los	Output Short Circuit Current		$ V_{CC} - V_{O} = 30V$		±200		mA
IO PEAK	Peak Output Current		$3.0V \le V_{CC} - V_O \le 1$	10V ±325	±500		mA
Avs	Large Signal Voltage Gain		$R_L \ge 50\Omega, V_Q = \pm 1$		200		V/mV
TR	Transient Response	Rise Time	$R_{\rm L} = 50\Omega, A_{\rm V} = 1.0$		300		ns
		Overshoot			5.0		%
SR	Slew Rate		$R_{L} = 50\Omega, A_{V} = 1.0$		0.6		V/µs
BW	Bandwidth		$A_V = 1.0$		1.0		MHz
The follow	wing specifications apply	v for - 55°C <		I		1	I
VIO	Input Offset Voltage	<u>, , , , , , , , , , , , , , , , , , , </u>	$R_S \le 10 \text{ k}\Omega$			4.5	mV
lio	Input Offset Current					60	nA
IIB	Input Bias Current					300	nA
CMRR	Common Mode Rejec	tion Batio	$R_{S} \le 10 \text{ k}\Omega$	80	100		dB
PSRR	Power Supply Rejection		$R_{S} \leq 10 \text{ k}\Omega$	80	100		dB
A _{VS}	Large Signal Voltage		$R_L \ge 50\Omega, V_O = \pm 1$		200		V/mV
V _{OP}	Output Voltage Swing		$R_L = 50\Omega$	±10	±12.5		V


Symbol	Paramete	r	Conditions	Min	Тур	Max	Units
V _{IO}	Input Offset Voltage		${\sf R}_{\sf S} \le$ 10 k Ω		1.0	6.0	mV
I _{IO}	Input Offset Current				5.0	50	nA
I _{IB}	Input Bias Current				50	250	nA
Zl	Input Impedance			0.25	1.5		MΩ
ICC	Supply Current				12	18	mA
V _{IR}	Input Voltage Range			V $^+$ $-$ 2V to V $^-$	V $^+$ $-$ 2V to V $^-$		V
los	Output Short Circuit C	urrent	$ V_{CC}-V_O = 30V$		±200		mA
IO PEAK	Peak Output Current		$3.0V \leq \left V_{CC}V_{O}\right \leq 10V$	±325	±500		mA
A _{VS}	Large Signal Voltage	Gain	$\text{R}_{\text{L}} \geq 50 \Omega, \text{V}_{\text{O}} = ~\pm 10 \text{V}$	25	200		V/m
TR	Transient Response	Rise Time	$R_L = 50\Omega, A_V = 1.0$		300		ns
		Overshoot			10		%
SR	Slew Rate		$R_L = 50\Omega, A_V = 1.0$		0.5		V/μ:
BW	Bandwidth		A _V = 1.0		1.0		MHz
The follo	wing specifications apply	y for 0° \leq T _J \leq	≤ +125°C				
V _{IO}	Input Offset Voltage		${\sf R}_{\sf S} \le$ 10 k Ω			7.5	mV
IIO	Input Offset Current					100	nA
I _{IB}	Input Bias Current					400	nA
CMRR	Common Mode Rejec	tion Ratio	${\sf R}_{\sf S} \le $ 10 k Ω	70	100		dB
PSRR	Power Supply Rejection	on Ratio	${\sf R}_{\sf S} \le 10 \ {\sf k} \Omega$	80	100		dB
A _{VS}	Large Signal Voltage Gain		$\text{R}_{L} \geq 50 \Omega, \text{V}_{O} = \ \pm 10 \text{V}$	25	200		V/m
V _{OP}	Output Voltage Swing		$R_{L} = 50\Omega$	±10	±12.5		V

Symbol	Paramete	r	Conditions	Min	Тур	Max	Units
V _{IO}	Input Offset Voltage		$R_{S} \leq 10 \ k\Omega$		1.0	8.0	mV
I _{IO}	Input Offset Current				5.0	50	nA
I _{IB}	Input Bias Current				50	250	nA
ZI	Input Impedance			0.25	1.5		MΩ
ICC	Supply Current				12	18	mA
V _{IR}	Input Voltage Range			+ 13 to V-	$+$ 13 to V $^-$		V
I _{OS}	Output Short Circuit Cu	urrent	$ V_{CC} - V_{O} = 30V$		±200		mA
I _{O PEAK}	Peak Output Current		$3.0V \leq \left V_{CC} - V_O\right \leq 10V$	±250	±400		mA
A _{VS}	Large Signal Voltage G	ain	$R_L \geq 50 \Omega, V_O = \pm 10 V$	25	200		V/m
TR	Transient Response Rise Time		$R_L = 50\Omega, A_V = 1.0$		300		ns
		Overshoot			10		%
SR	Slew Rate		$R_L = 50\Omega, A_V = 1.0$		0.5		V/μs
BW	Bandwidth		A _V = 1.0		1.0		MHz
The follow	ing specifications apply f	or 0° \leq T _J \leq +	125°C				
V _{IO}	Input Offset Voltage		${\sf R}_{\sf S} \le$ 10 k Ω			10	mV
I _{IO}	Input Offset Current					100	nA
I _{IB}	Input Bias Current					400	nA
CMR	Common Mode Rejection		${\sf R}_{\sf S} \le 10 \ {\sf k}\Omega$	70	100		dB
PSRR	Power Supply Rejectio	n Ratio	$R_{S} \le 10 \text{ k}\Omega$	80	100		dB
A _{VS}	Large Signal Voltage G	ain	$R_L \ge 50\Omega, V_O = \pm 10V$	25	200		V/m
V _{OP}	Output Voltage Swing		$R_{I} = 50\Omega$	±10	±12.5		v

Note 1: Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, use the thermal resistance values which follow the Equivalent Circuit Schematic.

Note 2: For a supply voltage less than 30V between V $^+$ and V $^-$, the absolute maximum input voltage is equal to the supply voltage.

Note 3: For military electrical specifications RETS759X are available for LM759H.

Package	Typ ^θ JC °C/W	Max ^θ JC °C/W	Typ ^θ JA °C/W	Max ^θ JA °C/W
Plastic Package (P)	8.0	12	75	80
Metal Can (H)	30	40	120	150

$$P_{D \text{ Max}} = \frac{T_{J \text{ Max}} - T_{A}}{\theta_{JC} + \theta_{CA}} \text{ or }$$

$$T_{L \text{ Max}} = T_{A}$$

$$= \frac{1_{J \text{ Max}} - 1_{A}}{\theta_{JA}} \text{ (without a heat sink)}$$
$$\theta_{CA} = \theta_{CS} + \theta_{SA}$$

Solving T_J:

$$T_J = T_A + P_D (\theta_{JC} + \theta_{CA})$$
 or

 $= T_A + P_D \theta_{JA}$ (without a heat sink) Where:

T_J = Junction Temperature

 $T_A = Ambient Temperature$

 $P_D = Power Dissipation$

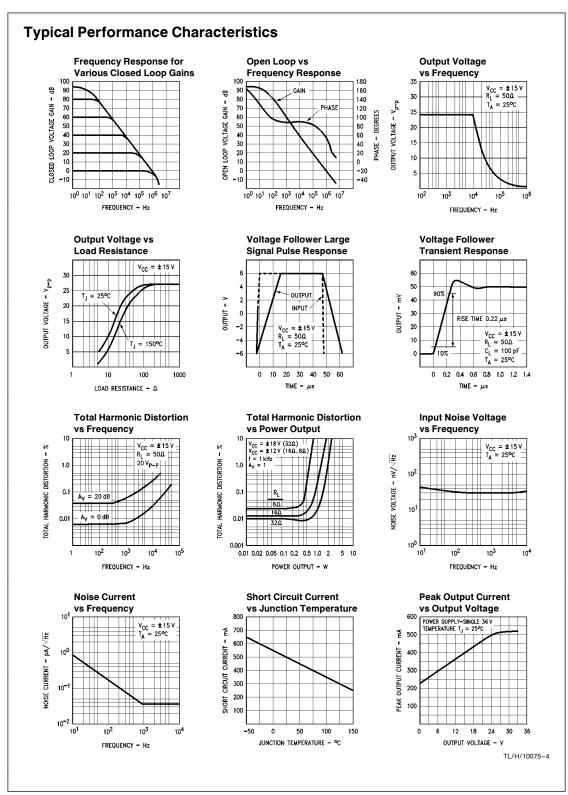
 θ_{JA} = Junction to ambient thermal resistance

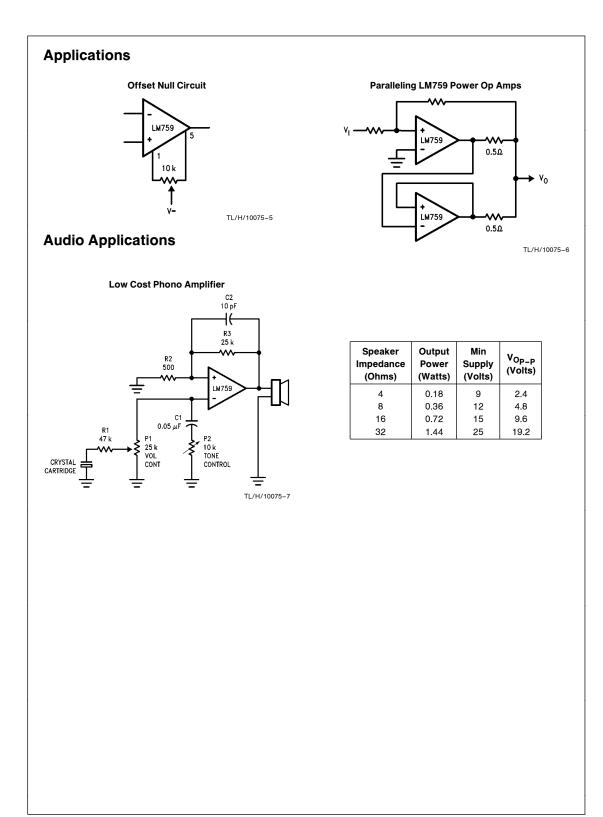
 $\theta_{\rm JC}$ = Junction to case thermal resistance

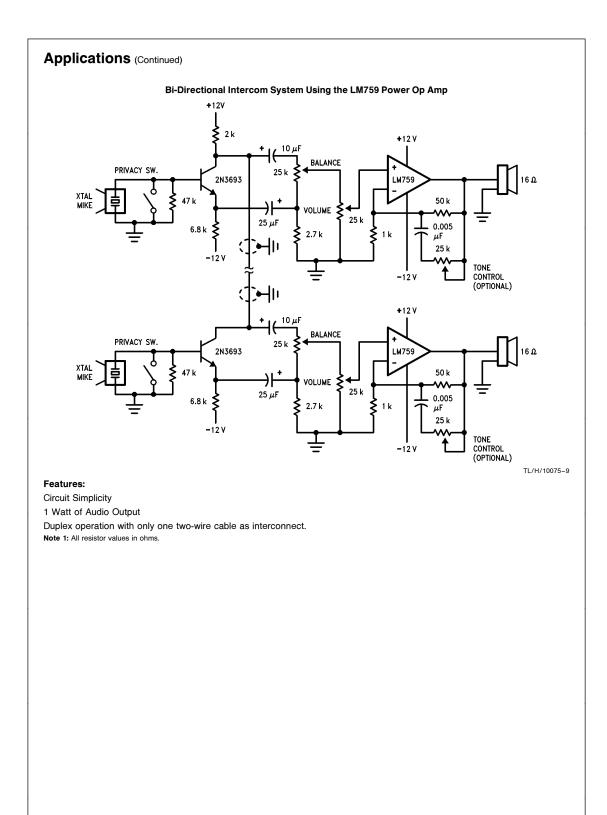
 θ_{CA} = Case to ambient thermal resistance

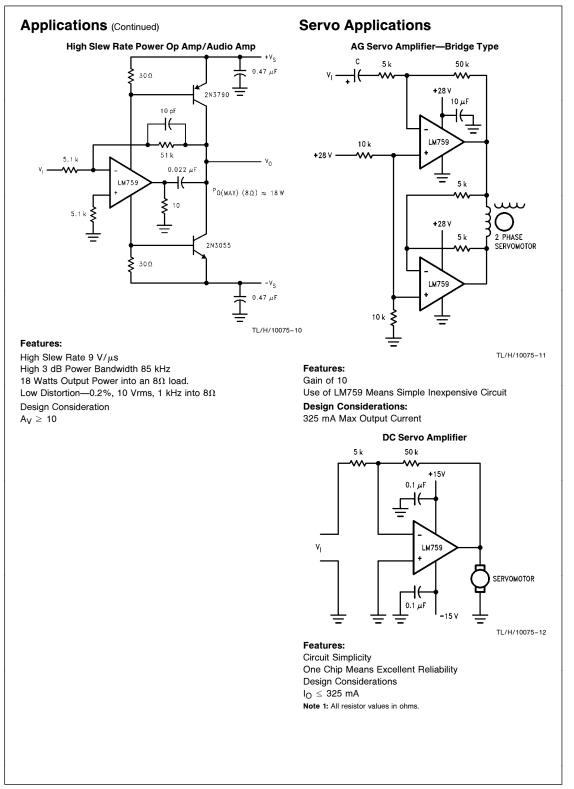
 $\theta_{\rm CS}$ = Case to heat sink thermal resistance

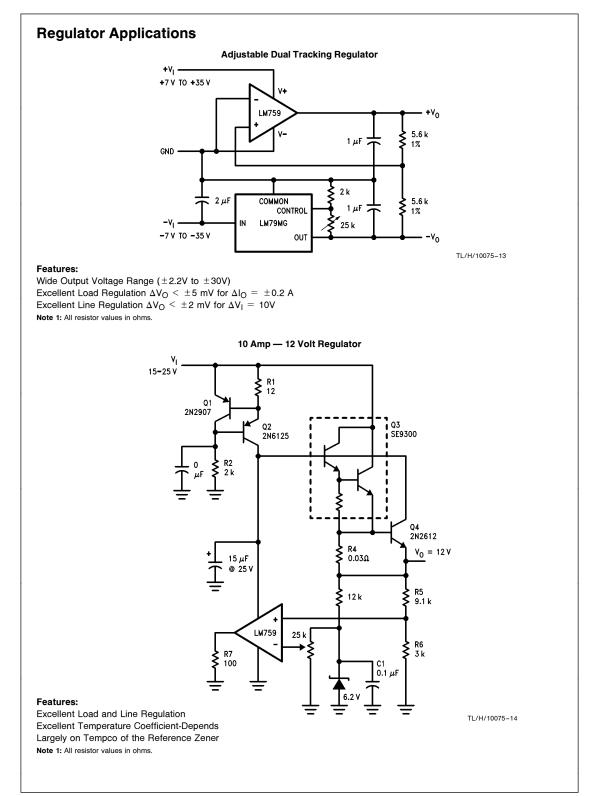
$$\theta_{SA}$$
 = Heat sink to ambient thermal resistance

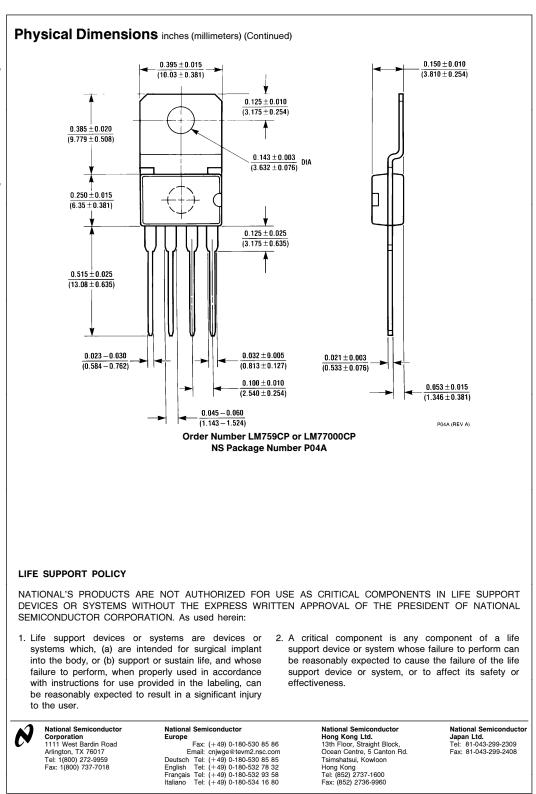

Mounting Hints


Metal Can Package (LM759CH/LM759MH)


The LM759 in the 8-Lead TO-99 metal can package must be used with a heat sink. With $\pm 15V$ power supplies, the LM759 can dissipate up to 540 mW in its quiescent (no load) state. This would result in a 100°C rise in chip temperature to 125°C (assuming a 25°C ambient temperature). In order to avoid this problem, it is advisable to use either a slip on or stud mount heat sink with this package. If a stud mount heat sink is used, it may be necessary to use insulating washers between the stud and the chassis because the case of the LM759 is internally connected to the negative power supply terminal.


Plastic Package (LM759CP/LM77000CP)


The LM759CP and LM77000CP are designed to be attached by the tab to a heat sink. This heat sink can be either one of the many heat sinks which are commercially available, a piece of metal such as the equipment chassis, or a suitable amount of copper foil as on a double sided PC board. The important thing to remember is that the negative power supply connection to the op amp must be made through the tab. Furthermore, adequate heat sinking must be provided to keep the chip temperature below 125°C under worst case load and ambient temperature conditions.



National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.