#### 捷多邦,专业PCB打样工厂,24小时加急出货

June 2002

National Semiconductor

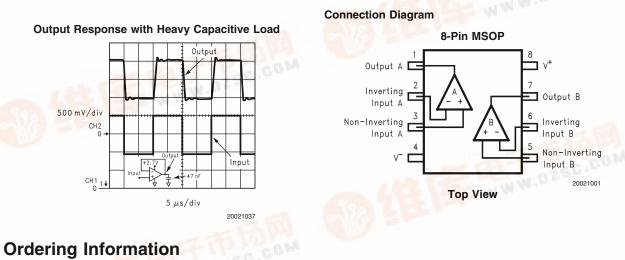
# LM8262 Dual **RRIO, High Output Current & Unlimited Cap Load Op** Amp in MSOP

# **General Description**

The LM8262 is a Rail-to-Rail input and output Op Amp which can operate with a wide supply voltage range. This device has high output current drive, greater than Rail-to-Rail input common mode voltage range, unlimited capacitive load drive capability, and provides tested and guaranteed high speed and slew rate. It is specifically designed to handle the requirements of flat panel TFT panel V<sub>COM</sub> driver applications as well as being suitable for other low power, and medium speed applications which require ease of use and enhanced performance over existing devices.

Greater than Rail-to-Rail input common mode voltage range with 50dB of Common Mode Rejection, allows high side and low side sensing, among many applications, without having any concerns over exceeding the range and no compromise in accuracy. In addition, most device parameters are insensitive to power supply variations; this design enhancement is yet another step in simplifying its usage. The output stage has low distortion (0.05% THD+N) and can supply a respectable amount of current (15mA) with minimal headroom from either rail (300mV).

The LM8262 is offered in the space saving MSOP package.


## **Features**

 $(V_{S} = 5V, T_{A} = 25^{\circ}C, Typical values unless specified).$ GBWP 21MHz 2.5V to 22V

- Wide supply voltage range
- Slew rate 12V/µs
- Supply current/channel 1.15 mA
- Cap load limit Unlimited
- +53mA/-75mA Output short circuit current
  - +/-5% Settling time 400ns (500pF, 100mV<sub>PP</sub> step)
- Input common mode voltage 0.3V beyond rails 15nV/√Hz
- Input voltage noise
- Input current noise
- THD+N < 0.05%

### Applications

- TFT-LCD flat panel V<sub>COM</sub> driver
- A/D converter buffer
- High side/low side sensing
- Headphone amplifier



#### Package Part Number Package **NSC Drawing** Media Transport Marking 8-Pin MSOP LM8262MM 1k Units Tape and Reel A46 MUA08A LM8262MMX 3.5k Units Tape and Reel

LM8262 Dual RRIO, High Output Current & Unlimited Cap Load Op Amp in MSOP

1pA/ √Hz

#### Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

| ESD Tolerance                                     | 2KV (Note 2)             |
|---------------------------------------------------|--------------------------|
| ESD Tolerance                                     | 200V(Note 9)             |
| V <sub>IN</sub> Differential                      | +/-10V                   |
| Output Short Circuit Duration                     | (Notes 3, 11)            |
| Supply Voltage (V <sup>+</sup> - V <sup>-</sup> ) | 24V                      |
| Voltage at Input/Output pins                      | $V^+$ +0.8V, $V^-$ -0.8V |
| Storage Temperature Range                         | -65°C to +150°C          |
| Junction Temperature (Note 4)                     | +150°C                   |
|                                                   |                          |

Soldering Information:

| Infrared or Convection (20 sec.) | 235°C |
|----------------------------------|-------|
| Wave Soldering (10 sec.)         | 260°C |

## **Operating Ratings**

| Supply Voltage (V <sup>+</sup> - V <sup>-</sup> ) | 2.5V to 22V    |
|---------------------------------------------------|----------------|
| Junction Temperature Range(Note 4)                | –40°C to +85°C |
| Package Thermal Resistance, $\theta_{JA}$ ,(Note  | e 4)           |
| 8-Pin MSOP                                        | 235°C/W        |

#### **2.7V Electrical Characteristics**

Unless otherwise specified, all limits guaranteed for  $T_J = 25^{\circ}C$ ,  $V^+ = 2.7V$ ,  $V^- = 0V$ ,  $V_{CM} = 0.5V$ ,  $V_O = V^+/2$ , and  $R_L > 1M\Omega$  to  $V^-$ . **Boldface** limits apply at the temperature extremes.

| Symbol             | Parameter                                | Condition                                                          | Min<br>(Note 6)     | Typ<br>(Note 5) | Max<br>(Note 6)       | Units |
|--------------------|------------------------------------------|--------------------------------------------------------------------|---------------------|-----------------|-----------------------|-------|
| V <sub>os</sub>    | Input Offset Voltage                     | $V_{CM} = 0.5V \& V_{CM} = 2.2V$                                   | -                   | +/-0.7          | +/–5<br><b>+/–7</b>   | mV    |
| TC V <sub>os</sub> | Input Offset Average Drift               | V <sub>CM</sub> = 0.5V & V <sub>CM</sub> = 2.2V<br>(Note 12)       | -                   | +/-2            | -                     | μV/C  |
| I <sub>B</sub>     | Input Bias Current                       | V <sub>CM</sub> = 0.5V<br>(Note 7)                                 | -                   | -1.20           | -2.00<br><b>-2.70</b> |       |
|                    |                                          | V <sub>CM</sub> = 2.2V<br>(Note 7)                                 | -                   | +0.49           | +1.00<br><b>+1.60</b> | μA    |
| I <sub>os</sub>    | Input Offset Current                     | $V_{CM} = 0.5V \& V_{CM} = 2.2V$                                   | -                   | 20              | 250<br><b>400</b>     | nA    |
| CMRR               | Common Mode Rejection<br>Ratio           | V <sub>CM</sub> stepped from 0V to 1.0V                            | 76<br><b>60</b>     | 100             | _                     |       |
|                    |                                          | V <sub>CM</sub> stepped from 1.7V to 2.7V                          | _                   | 100             | _                     | dB    |
|                    |                                          | V <sub>CM</sub> stepped from 0V to 2.7V                            | 58<br><b>50</b>     |                 | -                     |       |
| +PSRR              | Positive Power Supply<br>Rejection Ratio | V <sup>+</sup> = 2.7V to 5V                                        | 78<br>74            | 104             | -                     | dB    |
| CMVR               | Input Common-Mode Voltage<br>Range       | CMRR > 50dB                                                        | -                   | -0.3            | -0.1<br><b>0.0</b>    | V     |
|                    |                                          |                                                                    | 2.8<br><b>2.7</b>   | 3.0             | -                     | V     |
| A <sub>VOL</sub>   | Large Signal Voltage Gain                | $V_{O} = 0.5 \text{ to } 2.2V,$<br>$R_{L} = 10k \text{ to } V^{-}$ | 70<br>67            | 78              | -                     | dB    |
|                    |                                          | $V_{O} = 0.5 \text{ to } 2.2V,$<br>$R_{L} = 2k \text{ to } V^{-}$  | 67<br><b>63</b>     | 73              | -                     | dB    |
| Vo                 | Output Swing<br>High                     | $R_L = 10k \text{ to } V^-$                                        | 2.49<br><b>2.46</b> | 2.59            | -                     |       |
|                    |                                          | $R_L = 2k \text{ to } V^-$                                         | 2.45<br><b>2.41</b> | 2.53            | -                     | V     |
|                    | Output Swing<br>Low                      | $R_L = 10k \text{ to } V^-$                                        | -                   | 90              | 100<br><b>120</b>     | mV    |
| I <sub>sc</sub>    | Output Short Circuit Current             | Sourcing to V <sup>-</sup><br>V <sub>ID</sub> = 200mV (Note 10)    | 30<br>20            | 48              | -                     | A     |
|                    |                                          | Sinking to V <sup>+</sup><br>V <sub>ID</sub> = $-200$ mV (Note 10) | 50<br><b>30</b>     | 65              | -                     | mA    |

#### 2.7V Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for  $T_J = 25^{\circ}C$ ,  $V^+ = 2.7V$ ,  $V^- = 0V$ ,  $V_{CM} = 0.5V$ ,  $V_O = V^+/2$ , and  $R_L > 1M\Omega$  to  $V^-$ . **Boldface** limits apply at the temperature extremes.

| Symbol           | Parameter                    | Condition                                                        | Min<br>(Note 6)   | <b>Typ</b><br>(Note 5) | Max<br>(Note 6)   | Units      |
|------------------|------------------------------|------------------------------------------------------------------|-------------------|------------------------|-------------------|------------|
| I <sub>S</sub>   | Supply Current (both amps)   | No load, $V_{CM} = 0.5V$                                         | -                 | 2.0                    | 2.5<br><b>3.0</b> | mA         |
| SR               | Slew Rate (Note 8)           | $A_{V} = +1, V_{I} = 2V_{PP}$                                    | -                 | 9                      | _                 | V/µs       |
| f <sub>u</sub>   | Unity Gain-Frequency         | $V_{I} = 10mV, R_{L} = 2k\Omega$ to V <sup>+</sup> /2            | -                 | 10                     | -                 | MHz        |
| GBWP             | Gain Bandwidth Product       | f = 50KHz                                                        | 15.5<br><b>14</b> | 21                     | -                 | MHz        |
| Phi <sub>m</sub> | Phase Margin                 | $V_{I} = 10mV$                                                   | -                 | 50                     | _                 | Deg        |
| e <sub>n</sub>   | Input-Referred Voltage Noise | $f = 2KHz, R_S = 50\Omega$                                       | -                 | 15                     | -                 | nV/<br>√Hz |
| i <sub>n</sub>   | Input-Referred Current Noise | f = 2KHz                                                         | -                 | 1                      | -                 | pA/<br>√Hz |
| f <sub>max</sub> | Full Power Bandwidth         | $Z_{L} = (20 \text{pF}    10 \text{k}\Omega) \text{ to V}^{+}/2$ | -                 | 1                      | -                 | MHz        |

#### **5V Electrical Characteristics**

Unless otherwise specified, all limited guaranteed for  $T_J = 25^{\circ}C$ ,  $V^+ = 5V$ ,  $V^- = 0V$ ,  $V_{CM} = 1V$ ,  $V_O = V^+/2$ , and  $R_L > 1M\Omega$  to  $V^-$ . **Boldface** limits apply at the temperature extremes.

| Symbol             | Parameter                                | Condition                                                                 | Min<br>(Note 6)     | Typ<br>(Note 5) | Max<br>(Note 6)        | Units |
|--------------------|------------------------------------------|---------------------------------------------------------------------------|---------------------|-----------------|------------------------|-------|
| V <sub>OS</sub>    | Input Offset Voltage                     | $V_{CM} = 1V \& V_{CM} = 4.5V$                                            | -                   | +/-0.7          | +/–5<br><b>+/– 7</b>   | mV    |
| TC V <sub>os</sub> | Input Offset Average Drift               | V <sub>CM</sub> = 1V & V <sub>CM</sub> = 4.5V<br>(Note 12)                | -                   | +/-2            | -                      | µV/°C |
| I <sub>B</sub>     | Input Bias Current                       | V <sub>CM</sub> = 1V<br>(Note 7)                                          | -                   | -1.18           | -2.00<br>- <b>2.70</b> |       |
|                    |                                          | V <sub>CM</sub> = 4.5V<br>(Note 7)                                        | -                   | +0.49           | +1.00<br>+ <b>1.60</b> | μA    |
| I <sub>os</sub>    | Input Offset Current                     | $V_{CM} = 1V \& V_{CM} = 4.5V$                                            | -                   | 20              | 250<br><b>400</b>      | nA    |
| CMRR               | Common Mode Rejection<br>Ratio           | V <sub>CM</sub> stepped from 0V to 3.3V                                   | 84<br><b>72</b>     | 110             | -                      |       |
|                    |                                          | V <sub>CM</sub> stepped from 4V to 5V                                     | -                   | 100             | -                      | dB    |
|                    |                                          | V <sub>CM</sub> stepped from 0V to 5V                                     | 64<br><b>61</b>     | 80              | -                      |       |
| +PSRR              | Positive Power Supply<br>Rejection Ratio | $V^+ = 2.7V$ to 5V, $V_{CM} = 0.5V$                                       | 78<br><b>74</b>     | 104             | -                      | dB    |
| CMVR               | Input Common-Mode Voltage<br>Range       | CMRR > 50dB                                                               | -                   | -0.3            | -0.1<br><b>0.0</b>     | V     |
|                    |                                          |                                                                           | 5.1<br><b>5.0</b>   | 5.3             | -                      | V     |
| A <sub>VOL</sub>   | Large Signal Voltage Gain                | $V_{O} = 0.5 \text{ to } 4.5 \text{V},$<br>$R_{L} = 10 \text{k to V}^{-}$ | 74<br><b>70</b>     | 84              | -                      | ٩D    |
|                    |                                          | $V_{O} = 0.5$ to 4.5V,<br>$R_{L} = 2k$ to V <sup>-</sup>                  | 70<br>66            | 80              | -                      | dB    |
| Vo                 | Output Swing<br>High                     | $R_L = 10k \text{ to } V^-$                                               | 4.75<br><b>4.72</b> | 4.87            | -                      | V     |
|                    |                                          | $R_{L} = 2k \text{ to } V^{-}$                                            | 4.70<br><b>4.66</b> | 4.81            | -                      | V     |
|                    | Output Swing<br>Low                      | $R_L = 10k \text{ to } V^-$                                               | -                   | 86              | 125<br><b>135</b>      | mV    |

#### 5V Electrical Characteristics (Continued)

Unless otherwise specified, all limited guaranteed for  $T_J = 25^{\circ}C$ , V<sup>+</sup> = 5V, V<sup>-</sup> = 0V, V<sub>CM</sub> = 1V, V<sub>O</sub> = V<sup>+</sup>/2, and R<sub>L</sub> > 1M $\Omega$  to V<sup>-</sup>. **Boldface** limits apply at the temperature extremes.

| Symbol           | Parameter                    | Condition                                                         | Min<br>(Note 6) | <b>Typ</b><br>(Note 5) | Max<br>(Note 6) | Units      |
|------------------|------------------------------|-------------------------------------------------------------------|-----------------|------------------------|-----------------|------------|
| I <sub>sc</sub>  | Output Short Circuit Current | Sourcing to V <sup>-</sup>                                        | 35              | 53                     | -               |            |
|                  |                              | V <sub>ID</sub> = 200mV (Note 10)                                 | 20              |                        |                 |            |
|                  |                              | Sinking to V <sup>+</sup>                                         | 60              | 75                     | -               | mA         |
|                  |                              | $V_{ID} = -200 mV$ (Note 10)                                      | 50              |                        |                 |            |
| I <sub>S</sub>   | Supply Current (both amps)   | No load, $V_{CM} = 1V$                                            | -               | 2.3                    | 2.8             | mA         |
|                  |                              |                                                                   |                 |                        | 3.5             |            |
| SR               | Slew Rate (Note 8)           | $A_{V} = +1, V_{I} = 5V_{PP}$                                     | 10              | 12                     | -               | V/µs       |
|                  |                              |                                                                   | 7               |                        |                 |            |
| f <sub>u</sub>   | Unity Gain Frequency         | $V_{I} = 10mV,$                                                   | _               | 10.5                   | _               | MHz        |
|                  |                              | $R_L = 2k\Omega$ to V <sup>+</sup> /2                             |                 |                        |                 |            |
| GBWP             | Gain-Bandwidth Product       | f = 50 KHz                                                        | 16              | 21                     | -               | MHz        |
|                  |                              |                                                                   | 15              |                        |                 |            |
| Phi <sub>m</sub> | Phase Margin                 | $V_{I} = 10mV$                                                    | -               | 53                     | -               | Deg        |
| e <sub>n</sub>   | Input-Referred Voltage Noise | $f = 2KHz, R_S = 50\Omega$                                        | -               | 15                     | -               | nV/<br>√Hz |
|                  |                              |                                                                   |                 |                        |                 | √HZ        |
| i <sub>n</sub>   | Input-Referred Current Noise | f = 2KHz                                                          | -               | 1                      | -               | pA/<br>√Hz |
|                  |                              |                                                                   |                 |                        |                 | √HZ        |
| f <sub>max</sub> | Full Power Bandwidth         | $Z_{L} = (20 \text{pF II } 10 \text{k}\Omega) \text{ to V}^{+}/2$ | _               | 900                    |                 | KHz        |
| t <sub>s</sub>   | Settling Time (+/-5%)        | 100mV <sub>PP</sub> Step, 500pF load                              | -               | 400                    | -               | ns         |
| THD+N            | Total Harmonic Distortion +  | $R_L = 1k\Omega$ to V <sup>+</sup> /2                             | _               | 0.05                   | _               | %          |
|                  | Noise                        | f = 10KHz to $A_V$ = +2, 4V <sub>PP</sub> swing                   |                 |                        |                 |            |

#### +/-11V Electrical Characteristics

Unless otherwise specified, all limited guaranteed for  $T_J = 25^{\circ}C$ ,  $V^+ = 11V$ ,  $V^- = -11V$ ,  $V_{CM} = 0V$ ,  $V_O = 0V$ , and  $R_L > 1M\Omega$  to 0V. **Boldface** limits apply at the temperature extremes.

| Symbol             | Parameter                                | Condition                                                       | Min<br>(Note 6) | <b>Typ</b><br>(Note 5) | Max<br>(Note 6)       | Units |
|--------------------|------------------------------------------|-----------------------------------------------------------------|-----------------|------------------------|-----------------------|-------|
| V <sub>os</sub>    | Input Offset Voltage                     | $V_{CM} = -10.5V \& V_{CM} = 10.5V$                             | -               | +/-0.7                 | +/-7<br>+/- 9         | mV    |
| TC V <sub>os</sub> | Input Offset Average Drift               | V <sub>CM</sub> = -10.5V & V <sub>CM</sub> = 10.5V<br>(Note 12) | -               | +/-2                   | -                     | µV/°C |
| I <sub>B</sub>     | Input Bias Current                       | V <sub>CM</sub> = -10.5V<br>(Note 7)                            | -               | -1.05                  | -2.00<br><b>-2.80</b> |       |
|                    |                                          | V <sub>CM</sub> = 10.5V<br>(Note 7)                             | -               | +0.49                  | +1.00<br><b>+1.50</b> | μA    |
| I <sub>os</sub>    | Input Offset Current                     | $V_{CM} = -10.5V \& V_{CM} = 10.5V$                             | -               | 30                     | 275<br><b>550</b>     | nA    |
|                    | Common Mode Rejection<br>Ratio           | V <sub>CM</sub> stepped from –11V to 9V                         | 84<br><b>80</b> | 100                    | -                     |       |
|                    |                                          | V <sub>CM</sub> stepped from 10V to 11V                         | -               | 100                    | _                     | dB    |
|                    |                                          | V <sub>CM</sub> stepped from –11V to 11V                        | 74<br><b>72</b> | 88                     | -                     | l     |
| +PSRR              | Positive Power Supply<br>Rejection Ratio | V <sup>+</sup> = 9V to 11V                                      | 70<br>66        | 100                    | -                     | dB    |
| -PSRR              | Negative Power Supply<br>Rejection Ratio | $V^{-} = -9V$ to $-11V$                                         | 70<br>66        | 100                    | -                     | dB    |

+/-11V Electrical Characteristics (Continued) Unless otherwise specified, all limited guaranteed for  $T_J = 25^{\circ}C$ ,  $V^+ = 11V$ ,  $V^- = -11V$ ,  $V_{CM} = 0V$ ,  $V_O = 0V$ , and  $R_L > 1M\Omega$  to 0V. Boldface limits apply at the temperature extremes.

| Symbol            | Parameter                              | Condition                                                             | Min<br>(Note 6)       | Typ<br>(Note 5) | Max<br>(Note 6)         | Units              |
|-------------------|----------------------------------------|-----------------------------------------------------------------------|-----------------------|-----------------|-------------------------|--------------------|
| CMVR              | Input Common-Mode Voltage<br>Range     | CMRR > 50dB                                                           | _                     | -11.3           | -11.1<br><b>-11.0</b>   | V                  |
|                   |                                        |                                                                       | 11.1<br><b>11.0</b>   | 11.3            | -                       | V                  |
| A <sub>VOL</sub>  | Large Signal Voltage Gain              | $V_{O} = 0V$ to +/-9V,<br>$R_{L} = 10k\Omega$                         | 78<br><b>74</b>       | 85              | -                       | 15                 |
|                   |                                        | $V_{O} = 0V$ to +/-9V,<br>$R_{L} = 2k\Omega$                          | 72<br>66              | 79              | -                       | dB                 |
| Vo                | Output Swing<br>High                   | $R_L = 10k\Omega$                                                     | 10.65<br><b>10.61</b> | 10.77           | -                       |                    |
|                   |                                        | $R_L = 2k\Omega$                                                      | 10.6<br><b>10.55</b>  | 10.69           | _                       | V                  |
|                   | Output Swing<br>Low                    | $R_L = 10k\Omega$                                                     | -                     | -10.98          | -10.75<br><b>-10.65</b> | N                  |
|                   |                                        | $R_L = 2k\Omega$                                                      | -                     | -10.91          | -10.65<br><b>-10.6</b>  | V                  |
| I <sub>sc</sub>   | Output Short Circuit Current           | Sourcing to ground $V_{ID} = 200 \text{mV} (\text{Note 10})$          | 40<br><b>25</b>       | 60              | -                       |                    |
|                   |                                        | Sinking to ground $V_{ID} = 200 \text{mV} (\text{Note 10})$           | 65<br><b>55</b>       | 100             | -                       | mA                 |
| I <sub>S</sub>    | Supply Current                         | No load, $V_{CM} = 0V$                                                | -                     | 2.5             | 4<br>5                  | mA                 |
| SR                | Slew Rate<br>(Note 8)                  | $A_{V} = +1, V_{I} = 16V_{PP}$                                        | 10<br><b>8</b>        | 15              | _                       | V/µs               |
| f <sub>U</sub>    | Unity Gain Frequency                   | $V_{I} = 10 \text{mV}, \text{R}_{L} = 2 \text{k}\Omega$               | -                     | 13              | -                       | MHz                |
| GBWP              | Gain-Bandwidth Product                 | f = 50KHz                                                             | 18<br><b>16</b>       | 24              | -                       | MHz                |
| Phi <sub>m</sub>  | Phase Margin                           | $V_1 = 10 \text{mV}$                                                  | -                     | 58              | -                       | Deg                |
| e <sub>n</sub>    | Input-Referred Voltage Noise           | $f = 2KHz, R_S = 50\Omega$                                            | -                     | 15              | -                       | nV/<br>√Hz         |
| i <sub>n</sub>    | Input-Referred Current Noise           | f = 2KHz                                                              | -                     | 1               | -                       | pA/ <sub>√Hz</sub> |
| ts                | Settling Time (+/-1%, A <sub>V</sub> = | Positive Step, 5V <sub>PP</sub>                                       | -                     | 320             | _                       |                    |
|                   | +1)                                    | Negative Step, 5V <sub>PP</sub>                                       | -                     | 600             | -                       | ns                 |
| THD+N             | Total Harmonic Distortion<br>+Noise    | $R_L = 1k\Omega$ , f = 10KHz,<br>$A_V = +2$ , 15V <sub>PP</sub> swing | -                     | 0.01            | -                       | %                  |
| CT <sub>REJ</sub> | Cross-Talk Rejection                   | f = 5MHz, Driver<br>$R_L = 10k\Omega$                                 | -                     | 68              | _                       | dB                 |

#### +/-11V Electrical Characteristics (Continued)

**Note 1:** Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Rating indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics. **Note 2:** Human body model, 1.5kΩ in series with 100pF.

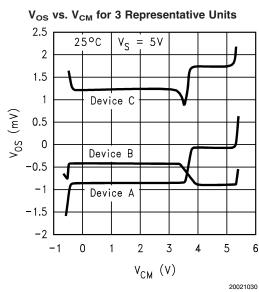
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C.

Note 4: The maximum power dissipation is a function of  $T_J(max)$ ,  $\theta_{JA}$ , and  $T_A$ . The maximum allowable power dissipation at any ambient temperature is  $P_D = (T_J(max) - T_A)/\theta_{JA}$ . All numbers apply for packages soldered directly onto a PC board.

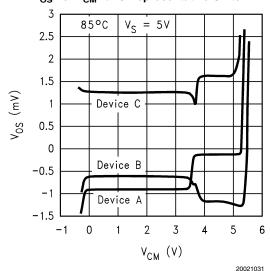
Note 5: Typical Values represent the most likely parametric norm.

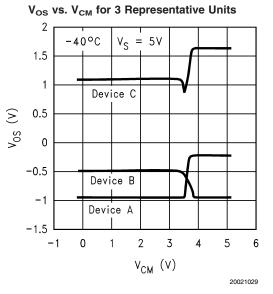
Note 6: All limits are guaranteed by testing or statistical analysis.

Note 7: Positive current corresponds to current flowing into the device.

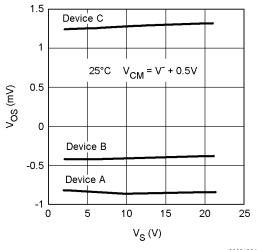

Note 8: Slew rate is the slower of the rising and falling slew rates. Connected as a Voltage Follower.

Note 9: Machine Model,  $0\Omega$  is series with 200pF.


Note 10: Short circuit test is a momentary test. See Note 11.


**Note 11:** Output short circuit duration is infinite for  $V_S \le 6V$  at room temperature and below. For  $V_S > 6V$ , allowable short circuit duration is 1.5ms. **Note 12:** Offset voltage average drift determined by dividing the change in  $V_{OS}$  at temperature extremes into the total temperature change.

## **Typical Performance Characteristics** $T_A = 25^{\circ}C$ , Unless Otherwise Noted



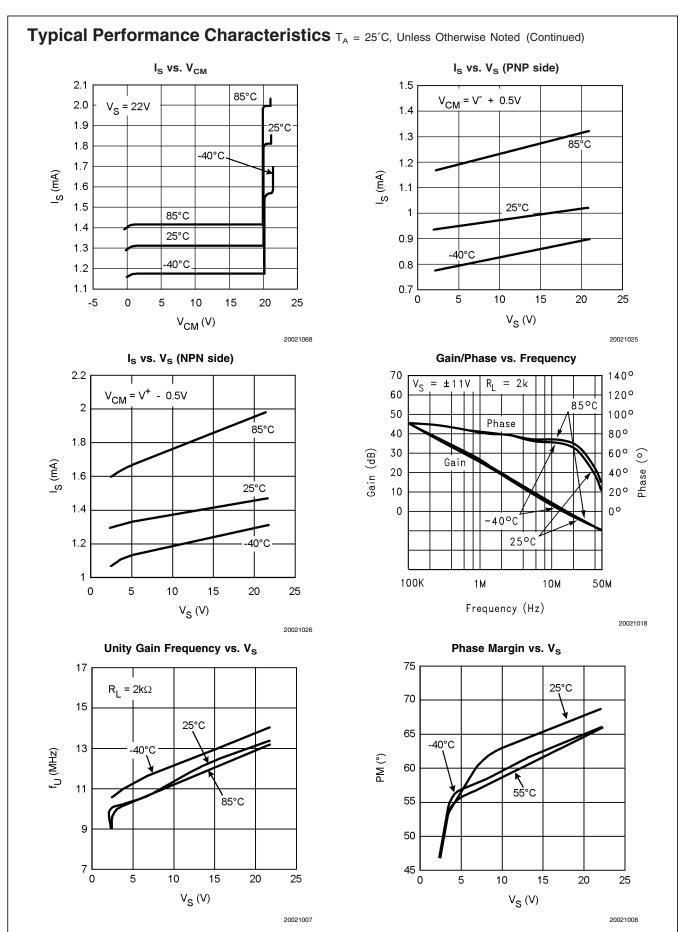












20021034

#### www.national.com

**Typical Performance Characteristics** T<sub>A</sub> = 25°C, Unless Otherwise Noted (Continued)  $\rm V_{OS}$  vs.  $\rm V_S$  for 3 Representative Units  $V_{\rm OS}$  vs.  $V_{\rm S}$  for 3 Representative Units 2 1.5  $V_{CM} = V^{-} + 0.5V$ 85°C Device C 1.5 1 Device C -40°C V<sub>CM</sub> = V<sup>-</sup> + 0.5V 1 V<sub>OS</sub> (mV) V<sub>OS</sub> (mV) 0.5 0.5 0 0 Device B -0.5 Device B -0.5 Device A -1 -0 Device A 0 5 10 15 20 25 5 10 15 20 25  $V_{S}(V)$  $V_{S}(V)$ 20021035 20021033  $I_B$  vs.  $V_{CM}$  $I_B$  vs.  $V_S$ 1000 -950 25°C  $V_{S} = 5V$ V<sub>S</sub> 2 -1000 <sup>V</sup>см <sup>=</sup>, 500 -1050 85°C -40°C 1 l<sub>B</sub> (nA) 0 I<sub>B</sub> (nA) -1100 85°C -1150 -500 25°C -1200 -40°C 40°C -1000 85°C -1250 -1300 L 0 25°C -1500 5 15 10 20 25 3 2 0 1 4 5 6 -1  $V_{S}(V)$ V<sub>CM</sub> (V) 20021036 20021024 I<sub>s</sub> vs. V<sub>CM</sub> I<sub>S</sub> vs. V<sub>CM</sub> 1.7 1.8  $V_{S}$ = 2.7V 1.6 1.7 85°C = 5V ۷<sub>S</sub> 85<sup>°</sup>C 1.5 1.6 1.4 1.5 25°C 1.3 1.4 (mA) (mA) 1.2 1.3 25°C <u>\_</u> <u>ں</u> -40°C 1.1 1.2 1 1.1 -40°C 0.9 1 0.8 0.9 0.7 0.8 -0.5 0 0.5 1.5 2 0 2 3 5 1 2.5 3 1 4 6 -1 V<sub>CM</sub> (V)  $V_{CM}$  (V) 20021027 20021028

# LM8262

www.national.com



#### **Typical Performance Characteristics** $T_A = 25^{\circ}C$ , Unless Otherwise Noted (Continued) Unity Gain Freq. and Phase Margin vs. $V_s$ $16 \qquad RL = 100k\Omega$ $14 \qquad PM$ $f_U$ $f_U$ $f_U$ $f_U$ $f_U$ $f_U$

50

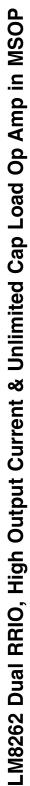
\_\_\_\_\_40 25

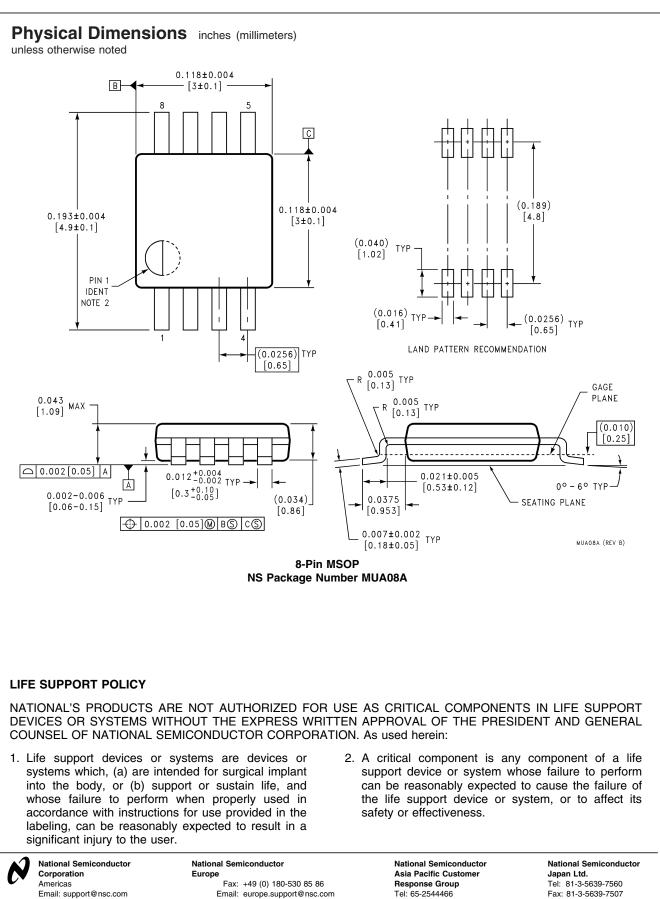
20021004

12

10 └─ 0

5


10


15

 $V_{S}(V)$ 

20

LM8262





www.national.com

English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

Deutsch Tel: +49 (0) 69 9508 6208

Tel: 65-2544466 Fax: 65-2504466 Email: ap.support@nsc.com Fax: 81-3-5639-7507

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.