查询LM837供应商

National Semiconductor

LM837 Low Noise Quad Operational Amplifier

General Description

The LM837 is a quad operational amplifier designed for low noise, high speed and wide bandwidth performance. It has a new type of output stage which can drive a 600 Ω load, making it ideal for almost all digital audio, graphic equalizer, preamplifiers, and professional audio applications. Its high performance characteristics also make it suitable for instrumentation applications where low noise is the key consideration.

The LM837 is internally compensated for unity gain operation. It is pin compatible with most other standard quad op amps and can therefore be used to upgrade existing systems with little or no change.

Schematic and Connection Diagrams

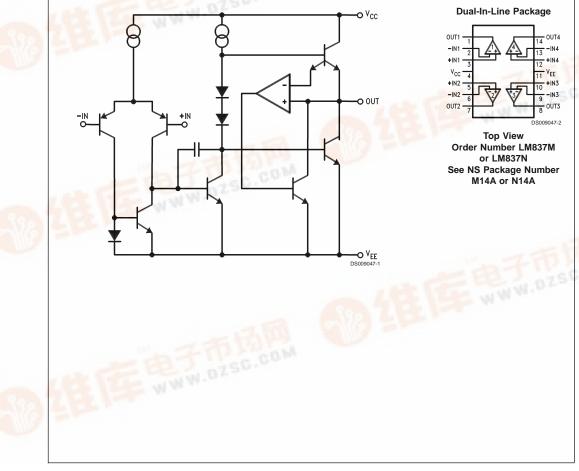
Features

- High slew rate 10 V/µs (typ); 8 V/µs (min)
- Wide gain bandwidth product 25 MHz (typ); 15 MHz (min)
- Power bandwidth
- High output current
- Excellent output drive performance
- Low input noise voltage
- Low total harmonic distortion
- Low offset voltage

M837 Low Noise Quad Operational Amplifier

May 1999

200 kHz (typ)


4.5 nV/√Hz

±40 mA

>600Ω

0.0015%

0.3 mV

www.national.com

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage, V _{CC} /V _{EE}	±18V
Differential Input Voltage, VID (Note 2)	±30V
Common Mode Input Voltage, V _{IC} (Note 2)	±15V
Power Dissipation, P_D (Note 3)	1.2W (N) 830 mW (M)
Operating Temperature Range, TOPR	-40°C to +85°C

Storage Temperature Range, T _{STG}	–60°C to +150°C
Soldering Information Dual-In-Line Package	
Soldering (10 seconds)	260°C
Small Outline Package Vapor Phase (60 seconds)	215°C
Infrared (15 seconds)	220°C
ESD rating to be determined.	
See AN-450 "Surface Mounting Methods	and Their Effect

on Product Reliability" for other methods of soldering surface mount devices.

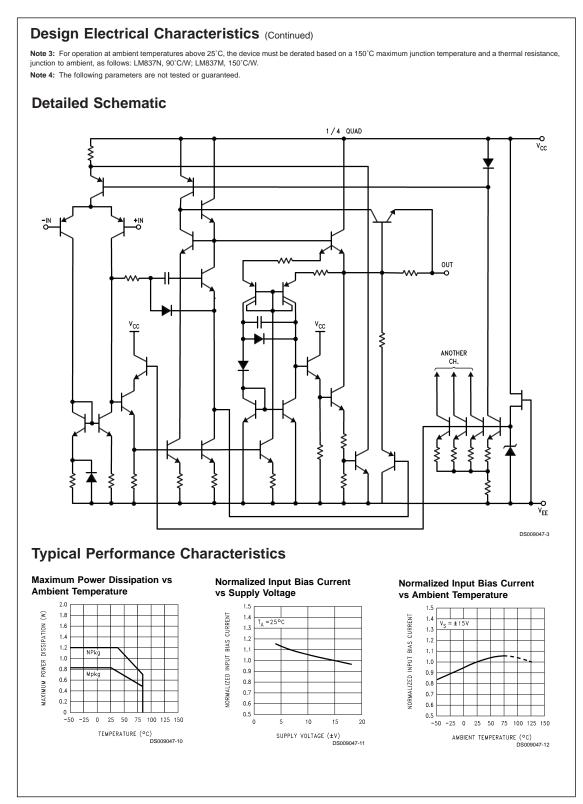
DC Electrical Characteristics

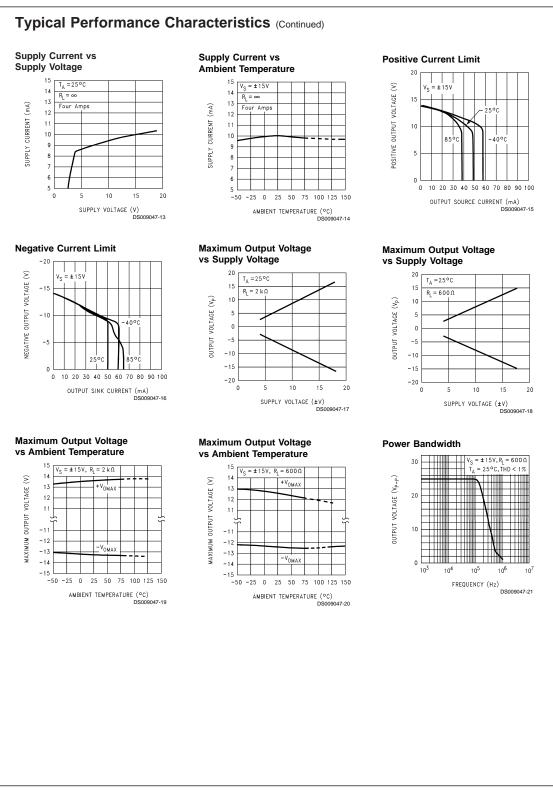
Symbol		Daram
$I_A = 25 C_2$	$V_{S} = \pm 15V$	

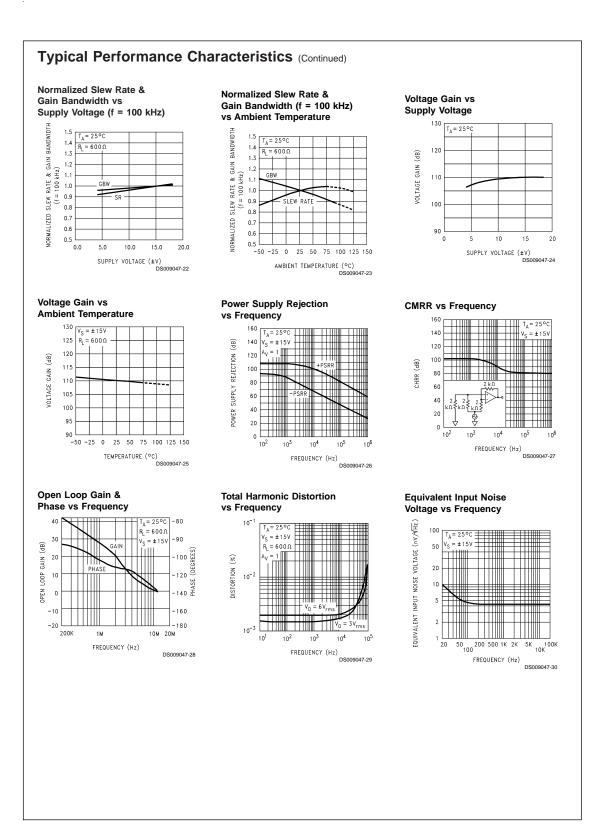
· •

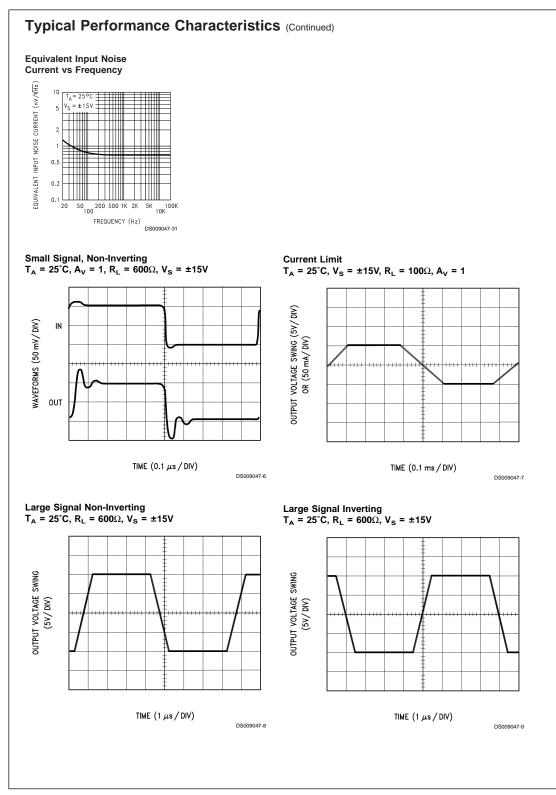
Symbol	Parameter	Condition	Min	Тур	Max	Units
Vos	Input Offset Voltage	R _S = 50Ω		0.3	5	mV
l _{os}	Input Offset Current			10	200	nA
I _B	Input Bias Current			500	1000	nA
A _V	Large Signal Voltage Gain	$R_L = 2 k\Omega, V_{OUT} = \pm 10V$	90	110		dB
V _{OM}	Output Voltage Swing	$R_L = 2 k\Omega$	±12	±13.5		V
		$R_{L} = 600\Omega$	±10	±12.5		V
V _{CM}	Common Mode Input Voltage		±12	±14.0		V
CMRR	Common Mode Rejection Ratio	$V_{IN} = \pm 12V$	80	100		dB
PSRR	Power Supply Rejection Ratio	$V_{\rm S}$ = 15 ~ 5, -15 ~ -5	80	100		dB
I _S	Power Supply Current	R _L = ∞, Four Amps		10	15	mA

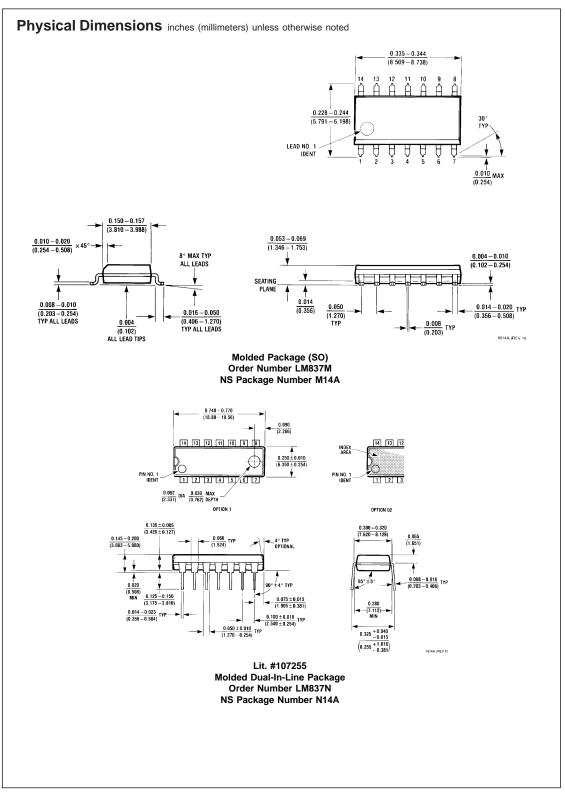
AC Electrical Characteristics


$T_A = 25^{\circ}C, V_S = \pm 15V$


Symbol	Parameter	Condition	Min	Тур	Max	Units
SR	Slew Rate	$R_{L} = 600\Omega$	8	10		V/µs
GBW	Gain Bandwidth Product	f = 100 kHz, $R_{L} = 600\Omega$	15	25		MHz


Symbol	Parameter	Condition	Min	Тур	Max	Unit
PBW	Power Bandwidth	$V_{O} = 25 V_{P-P}, R_{L} = 600\Omega, THD < 1\%$		200		kHz
e _{n1}	Equivalent Input Noise Voltage	JIS A, R _S = 100Ω		0.5		μV
e _{n2}	Equivalent Input Noise Voltage	f = 1 kHz		4.5		nV/ √Hz
i _n	Equivalent Input Noise Current	f = 1 kHz		0.7		pA/ √Hz
THD	Total Harmonic Distortion	$\begin{array}{l} A_{V} = 1, V_{OUT} = 3 \; Vrms, \\ f = 20 \; \sim \; 20 \; kHz, R_{L} = 600\Omega \end{array}$		0.0015		%
f _U	Zero Cross Frequency	Open Loop		12		MHz
φ _m	Phase Margin	Open Loop		45		deg
	Input-Referred Crosstalk	f = 20 ~ 20 kHz		-120		dB
$\Delta V_{OS} / \Delta T$	Average TC of Input Offset Voltage			2		μV/°C


given, however, the typical value is a good indication of device performance.


Note 2: Unless otherwise specified the absolute maximum input voltage is equal to the power supply voltage.

Notes

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Xational Semiconductor Corporation Americas Tei: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

 National Semiconductor

 Europe
 Fax: +49 (0) 1 80-530 85 86

 Email: europe.support@nsc.com

 Deutsch Tel: +49 (0) 1 80-530 85 85

 English Tel: +49 (0) 1 80-532 78 32

 Français Tel: +49 (0) 1 80-532 93 58

 Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.