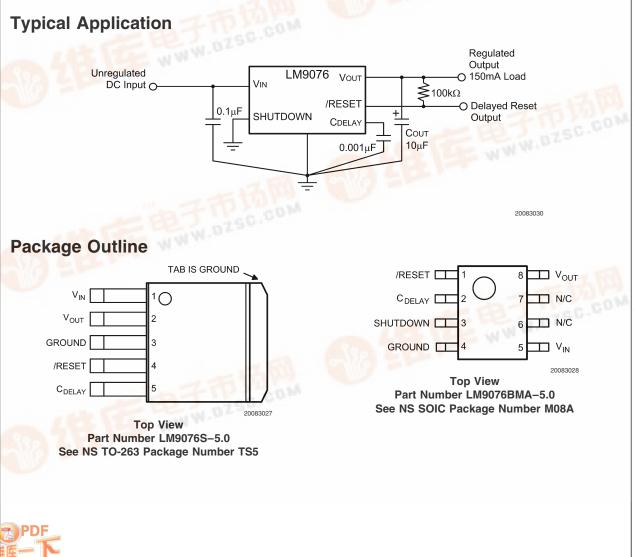
N**ational** Semiconductor

捷多邦,专业PCB打样工厂,24小时加急出货

December 2003

LM9076 150mA Ultra-Low Quiescent Current LDO Regulator with Delayed Reset Output


General Description

The LM9076 is a 5 Volt, +/-2%, 150mA logic controlled voltage regulator. The regulator features an active low delayed reset output flag which can be used to reset a microprocessor system at turn-ON and in the event that the regulator input voltage falls below a minimum value. An external capacitor programs a delay time interval before the reset output pin can return high.

Designed for automotive and industrial applications, the LM9076 contains a variety of protection features such as thermal shutdown, input transient protection and a wide operating temperature range. The LM9076 uses an PNP pass transistor which allows low drop-out voltage operation.

Features

- Ultra Low Ground Pin Current, 25µA typical for 100µA load
- V_{OUT} initial accuracy of +/-1%
- V_{OUT} accurate to +/2% over Load and Temperature Conditions
- Low Dropout Voltage, 200mV typical with 150mA load
- Low Off State Ground Pin current
- Delayed RESET output pin for low V_{OUT} detection
- +70V/-50V Voltage Transients
- Operational V_{IN} up to +40V

© 2004 National Semiconductor Corporation DS200830

LM9076

Absolute Maximum Ratings (Note 1)

V _{IN} (DC)	-15V to +55V
$V_{\rm IN}(\text{+Transient})$ t< 10ms, Duty Cycle <1%	+70V
V _{IN} (-Transient) t< 1ms, Duty Cycle <1%	-50V
SHUTDOWN Pin	-15V to +52V
RESET Pin	-0.3V to 20V
C _{DELAY} Pin	-0.3V to $V_{\rm OUT}$ +0.3V
Storage Temperature	-65°C to +150°C
Junction Temperature (T_J)	+175C
ESD, HBM, per AEC - Q100 - 002	+/-2kV
ESD, MM, per AEC - Q100 - 003	+/-250V

Operating Ratings (Note 1)

V _{IN} Pin	5.35V to 40V
V _{SHUTDOWN} Pin	0V to 40V
Ambient Temperature	$-40^{\circ}C < T_A < +125^{\circ}C$
Thermal Resistance TS5B (Note 6	6)
θја	75°C/W
θјс	2.9°C/W
Thermal Resistance M08A (Note	6)
θја	156°C/W
θјс	59°C/W

Electrical Characteristics for LM9076–5.0

The following specifications apply for V_{IN}= 14V; V_{SHUTDOWN} = Open; I_{LOAD} = 10mA; T_A = +25°C; C_{OUT} = 10µF, 0.5 Ω < ESR < 4.0 Ω ; unless otherwise specified. Bold Values indicate -40°C ≤ T_A≤ 125°C. (Note 4, Note 5)

Symbol	Parameter	Conditions	Min	Тур	Мах	Units
LM9076-5.0	REGULATOR CHARACT	ERISTICS		1	1	
V _{OUT} Ou	Output Voltage		4.95	5.00	5.05	V
		$1mA \le I_{LOAD} \le 150mA$	4.90	5.00	5.10	V
		$V_{IN} = 60V,$	4.50	5.00	5.50	V
		$R_{LOAD} = 1K\Omega, t \le 10$				
	0.1.11/11.01/	40ms		10	050	
	Output Voltage Off	$V_{SHUTDOWN} \ge 2V,$	-	40	250	mV
		$R_{LOAD} = 1K\Omega$				
	Reverse Battery	$V_{IN} = -15V,$	-	0	-300	mV
		$R_{LOAD} = 1K\Omega$				
∆V _{OUT}	Line Regulation	$9.0V \le V_{IN} \le 16V,$	-	4	25	mV
		I _{LOAD} = 10mA				
		$16V \le V_{IN} \le 40V,$	-	17	25	mV
		I _{LOAD} = 10mA				
	Load Regulation	$1\text{mA} \le I_{\text{LOAD}} \le 150\text{mA}$	-	42	60	mV
/ _{DO}	Dropout Voltage	I _{LOAD} = 10mA	-	30	50	mV
		I _{LOAD} = 50mA	-	80	-	mV
		I _{LOAD} = 150mA	-	150	250	mV
GND	Ground Pin Current	$9V \le V_{IN} \le 16V,$	_	25	35	μΑ
		I _{LOAD} = 100uA				
		$9V \le V_{IN} \le 40V,$	-	125	160	μA
		I _{LOAD} = 10mA				
		$9V \le V_{IN} \le 40V,$	-	0.6	-	mA
		I _{LOAD} = 50mA				
		$9V \le V_{IN} \le 16V,$	-	3.6	4.5	mA
		$I_{LOAD} = 150 \text{mA}$				
	Ground Pin Current	$9V \le V_{IN} \le 40V,$	_	15	25	μA
	in Shut- down Mode	V _{SHUTDOWN} = 2V				
I _{SC}	V _{OUT} Short Circuit	V _{IN} = 14V,	200	400	750	mA
	Current	$R_{LOAD} = 1\Omega$				
PSRR	Ripple Rejection	$V_{\rm IN} = (14V_{\rm DC}) +$			-	
		(1V _{RMS} @ 120Hz)	50	60		dB
		I _{LOAD} = 50mA				
RESET PIN	CHARACTERISTICS					
V _{OR}	Minimum V _{IN} for valid RESET Status	(Note 3)	_	1.3	2.0	V

LM9076

Electrical Characteristics for LM9076–5.0 (Continued)

The following specifications apply for V_{IN} = 14V; $V_{SHUTDOWN}$ = Open; I_{LOAD} = 10mÅ; T_A = +25°C; C_{OUT} = 10µF, 0.5 Ω < ESR < 4.0 Ω ; unless otherwise specified. Bold Values indicate -40°C $\leq T_A \leq 125$ °C. (Note 4, Note 5)

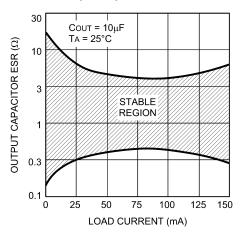
Symbol	Parameter	Conditions	Min	Тур	Max	Units
RESET PIN	CHARACTERISTICS					
V_{THR}	V _{OUT} Threshold for RESET Low	(Note 3)	0.83	0.89	0.94	X V _{OUT} (Nom)
V _{OH}	RESET pin high voltage	External pull-up resistor to V _{OUT} = 100kΩ	V _{OUT} X 0.90	V _{OUT} X 0.99	V _{OUT}	V
V _{OL}	RESET pin low voltage	$C_{DELAY} < 4.0V,$ $I_{SINK} = 250\mu A$	_	0.2	0.3	V
C _{DELAY} PIN	CHARACTERISTICS					
IDELAY	C _{DELAY} Charging Current	$V_{IN} = 14V,$ $V_{DELAY} = 0V$	-0.35	-0.42	-0.50	uA
V _{OL}	C _{DELAY} pin low voltage	$V_{OUT} < 4.0V,$ $I_{SINK} = I_{DELAY}$	-	0.100	_	V
t _{delay}	Reset Delay Time	$V_{IN} = 14V, C_{DELAY} = 0.001 uF$ $V_{OUT} \text{ rising from 0V,}$ $\Delta t \text{ from } V_{OUT} > V_{OR}$ to RESET pin HIGH	9.5	11.9	14.3	ms
SHUTDOWN	N CONTROL LOGIC — L	M9076BMA Only				
V _{IL(SD)}	SHUTDOWN Input Low Threshold Voltage	V _{SHUTDOWN} pin falling from 5.0V until Vout >4.5V (Vout = On)	1	1.5	_	V
V _{IH(SD)}	SHUTDOWN Input High Threshold Voltage	V _{SHUTDOWN} pin rising from 0V until Vout < 0.5V (Vout = Off)	_	1.5	2	V
I _{IH(SD)}	SHUTDOWN Pin	V _{SHUTDOWN} = 40V	—	35		μA
	High Bias Current	V _{SHUTDOWN} = 5V		15	35	μΑ
		V _{SHUTDOWN} = 2V	_	6	10	μA
I _{IL(SD)}	SHUTDOWN Input Low Bias Current	V _{SHUTDOWN} = 0V	-	0	_	μΑ

Note 1: Absolute Maximum Ratings indicate the limits beyond which the device may cease to function, and/or damage to the device may occur.

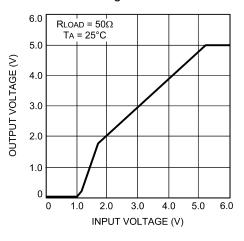
Note 2: Operating Ratings indicate conditions for which the device is intended to be functional, but does not guarantee specific performance limits. For guaranteed specifications and conditions refer to the Electrical Characteristics

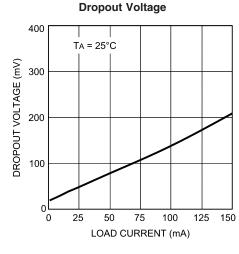
Note 3: Not Production tested, Guaranteed by Design. Minimum, Typical, and/or Maximum values are provided for informational purposes only.

Note 4: Pulse testing used maintain constant junction temperature (T $_J$).

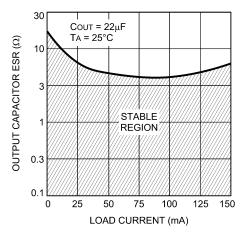

Note 5: The regulated output voltage specification is not guaranteed for the entire range of V_{IN} and ouput loads. Device operational range is limited by the maximum junction temperature (T J). The junction temperature is influenced by the ambient temperature (T A), package selection, input voltage (V_{IN}), and the output load current. When operating with maximum load currents the input voltage and/or ambient temperature will be limited. When operating with maximum input voltage the load current and/or the ambient temperature will be limited.

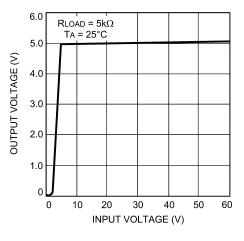
Note 6: Worst case (FREE AIR) per EIA/JESD51-3.

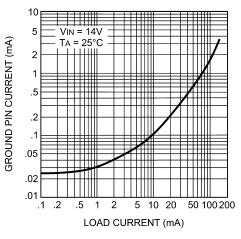


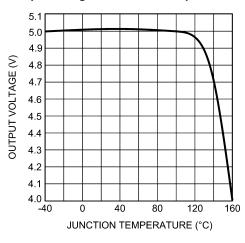

Typical Performance Characteristics

Output Capacitor ESR








Ground Pin Current vs Load Current

LM9076

Typical Performance Characteristics (Continued)

Output Voltage vs Junction Temperature

20083038

Application Information

REGULATOR BASICS

This regulator is suitable for Automotive applications where continuous connection to the battery is required (refer to the Typical Application circuit).

The pass transistor of the regulator is an PNP device. A 10uF capacitor on the V_{OUT} pin will provide adequate performance in most circumstances. There is no maximum value for the regulator output bypass capacitance.

INPUT CAPACITOR

The LM9076 requires a low source impedance to maintain regulator stability because portions of the internal bias circuitry are connected directly to V_{IN}. At a minimum, at 0.1 μ F ceramic capacitor should be placed between the LM9076 V_{IN} and Ground pins, as close as is physically possible.

OUTPUT CAPACITOR

An output capacitor is also required for stability. This capacitor must be placed between the LM9076 V_{OUT} and Ground pins, as close as is physically possible, using traces that are not part of the main load current path.

The output capacitor must meet the requirements for minimum capacitance and also maintain the appropriate ESR value of the full operating ambient temperature range to assure stability. There is no maximum limit for the output capacitance value, as long as ESR is maintained. See the Typical Performance Characteristics curves for details.

Solid tantalum capacitors are recommended as they generally maintain capacitance and ESR ratings over a wide temperature range.

Ceramic capacitor types XR7 and X5R may be used if a series resistor is added to simulate the ESR requirement.

Aluminum electrolytic capacitors are not recommend, as they are subject to wide changes in capacitance and ESR values across temperature.

DELAY CAPACITOR

The capacitor on the Delay pin must be a low leakage type since the charge current is minimal (500nA typical) and the pin must fully charge to 5V. Ceramic, Mylar, and polystyrene

capacitor types are generally recommended, although changes in capacitance values across temperature changes will have some effect on the delay timing.

SHUTDOWN PIN

The basic On/Off control of the regulator is accomplished with the SHUTDOWN pin. By pulling the SHUTDOWN pin high the regulator output is switched Off. When the regulator is switched Off the load on the battery will be primarily due to the SHUTDOWN pin current.

When the SHUTDOWN pin is low, or left open, the regulator is switched On. When an unregulated supply, such as V BATTERY, is used to pull the SHUTDOWN pin high a series resistor in the range of $10K\Omega$ to $50K\Omega$ is recommended to provide reverse voltage transient protection of the SHUT-DOWN pin. Adding a small capacitor (0.001uF typical) from the SHUTDOWN pin to Ground will add noise immunity to prevent accidental turn on due to noise on the supply line.

RESET FLAG

Proper operation of the $\overline{\text{RESET}}$ circuity is not guaranteed for V_{IN} voltages of less than 2.0V. The $\overline{\text{RESET}}$ pin will provide information on the status of the regulator V_{OUT} voltage level. Any condition that causes the V_{OUT} voltage to drop to typically 89% normal would cause the $\overline{\text{RESET}}$ pin to go low. This will warn of a system Vcc supply that may cause abnormal operation.

Of course, when the regulator is switched Off in normal operation the $\overline{\text{RESET}}$ pin will be low.

If the regulator is On, and then switched off, the $\overline{\text{RESET}}$ flag will go low when the V_{OUT} voltage stored on the output capacitor has decayed adequately.

Excessive thermal dissipation of the device such that the Thermal Shutdown circuit is activated which then switches the regulator output Off, would cause the RESET pin to go low.

The $\overline{\text{RESET}}$ pin is an open collector output and requires an external pull-up resistor to V_{OUT} . The external pull-up resistor should be in the range of $10 K\Omega$ to $200 K\Omega$.

Application Information (Continued)

RESET DELAY TIME

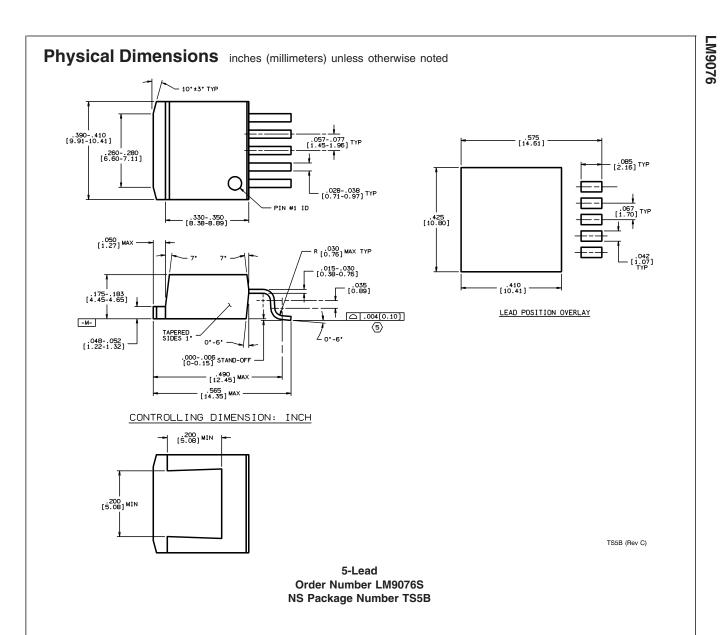
When the regulator output is switched On, or after recovery from brief V_{OUT} fault condition, the RESET flag can be can be programmed to remain low for an additional delay time. This will give time for any system reference voltages, clock signals, etc., to stabilize before the micro-controller resumes normal operation.

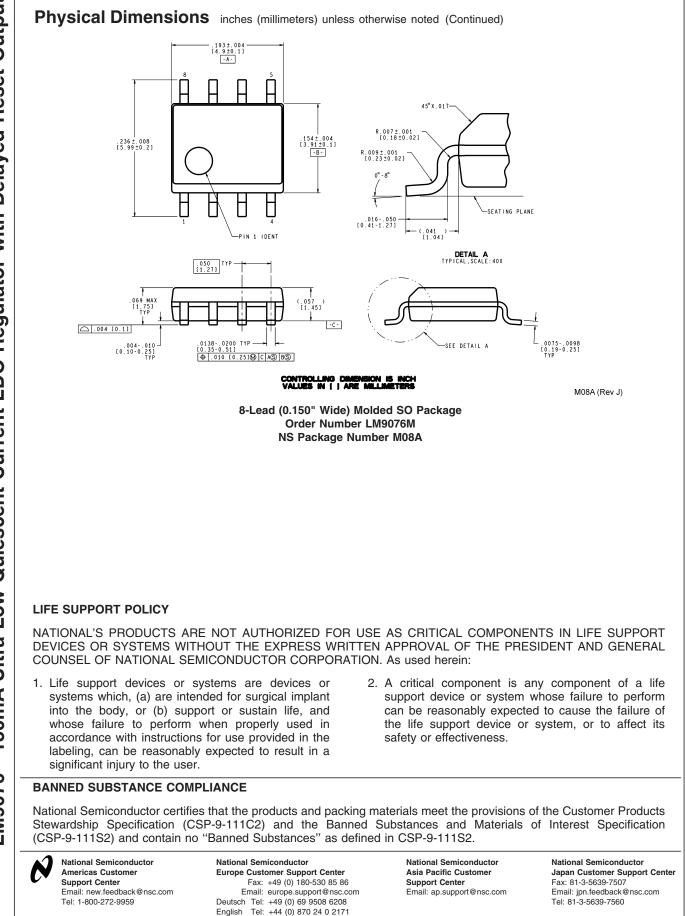
This delay time is controlled by the capacitor value on the C_{DELAY} pin. During normal operation the C_{DELAY} capacitor is charged to near V_{OUT} . When a V_{OUT} fault causes the RESET pin to go low, the C_{DELAY} capacitor is quickly discharged to ground. When the V_{OUT} fault is removed, and V_{OUT} returns to the normal operating value, the C_{DELAY} capacitor begins charging at a typical constant 0.420uA rate. When the voltage on the C_{DELAY} capacitor reaches the same potential as the V_{OUT} pin the RESET pin will be allowed to return high.

The typical RESET delay time can be calculated with the following formula:

 $t_{DELAY} = V_{OUT} X (C_{DELAY} / I_{DELAY})$

For a C_{DELAY} value of 0.001uF and a I_{DELAY} value of 0.475uA the typical RESET delay time is:


$$\label{eq:t_delta} \begin{split} t_{\text{DELAY}} &= V_{\text{OUT}} \; X \; (0.001 \text{uF} \; / \; 0.475 \text{uA}) \\ t_{\text{DELAY}} &= 5.0 V \; X \; (0.001 \text{uF} \; / \; 0.420 \text{uA}) = \; 11.9 \text{ms} \end{split}$$


THERMAL PROTECTION

Device operational range is limited by the maximum junction temperature (T_J). The junction temperature is influenced by the ambient temperature (T_A), package selection, input voltage (V_{IN}), and the output load current. When operating with maximum load currents the input voltage and/or ambient temperature will be limited. When operating with maximum input voltage the load current and/or the ambient temperature will be limited.

Even though the LM9076 is equipped with circuitry to protect itself from excessive thermal dissipation, it is not recommended that the LM9076 be operated at, or near, the maximum recommended die junction temperature (T_J) as this may impair long term device reliability.

The thermal protection circuity monitors the temperature at the die level. When the die temperature exceeds typically 160C the voltage regulator output will be switched off.

www.national.com

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Français Tel: +33 (0) 1 41 91 8790