查询LMX1501供应商

November 1995

ynthesizer for RF

Personal Communications

X1501A/L

IX 15

511 PL

Latinum

1

GHz Frequency

National Semiconductor

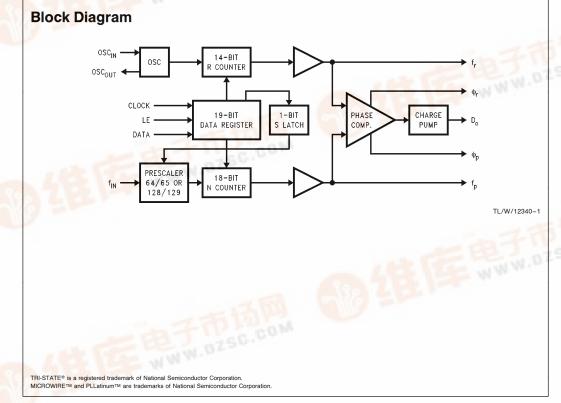
LMX1501A/LMX1511 PLLatinum™ 1.1 GHz Frequency Synthesizer for RF Personal Communications

General Description

The LMX1501A and the LMX1511 are high performance frequency synthesizers with integrated prescalers designed for RF operation up to 1.1 GHz. They are fabricated using National's ABiC IV BiCMOS process.

The LMX1501A and the LMX1511 contain dual modulus prescalers which can select either a 64/65 or a 128/129 divide ratio at input frequencies of up to 1.1 GHz. Using a proprietary digital phase locked loop technique, the LMX1501A/11's linear phase detector characteristics can generate very stable, low noise local oscillator signals.

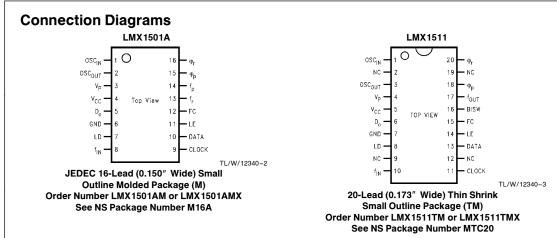
Serial data is transferred into the LMX1501A and the LMX1511 via a three line MICROWIRE™ interface (Data, Enable, Clock). Supply voltage can range from 2.7V to 5.5V. The LMX1501A and the LMX1511 feature very low current consumption, typically 6 mA at 3V.


The LMX1501A is available in a JEDEC 16-pin surface mount plastic package. The LMX1511 is available in a TSSOP 20-pin surface mount plastic package.

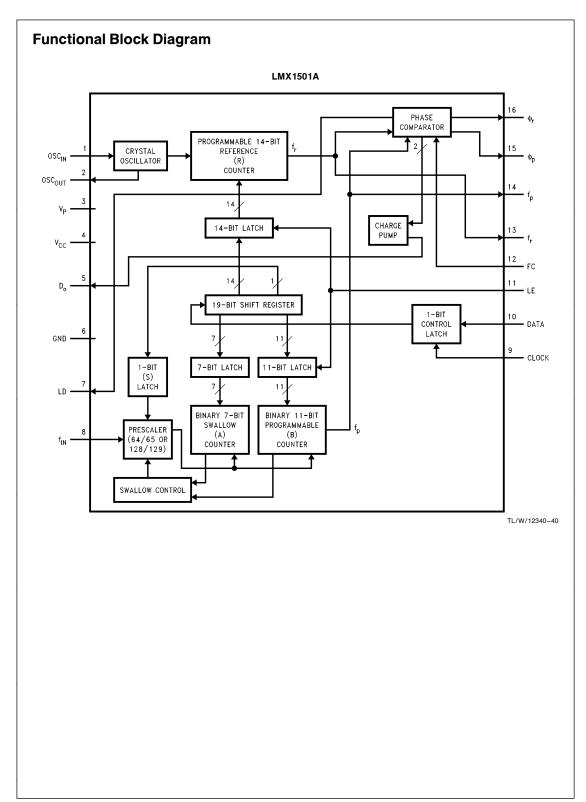
Features

- RF operation up to 1.1 GHz
- 2.7V to 5.5V operation
- Low current consumption:
- I_{CC} = 6 mA (typ) at V_{CC} = 3V
- Dual modulus prescaler: 64/65 or 128/129
- Internal balanced, low leakage charge pump
- Small-outline, plastic, surface mount JEDEC, 0.150" wide, (1501A) or TSSOP, 0.173" wide, (1511) package

Applications


- Cellular telephone systems (AMPS, NMT, ETACS)
- Portable wireless communications (PCS/PCN, Cordless)
- Advanced cordless telephone systems (CT-1/CT-1+, CT-2, ISM902-928)
- Other wireless communication systems

© 1995 National Semiconductor Corporation TL/W/12340




RRD-B30M115/Printed in U. S. A.

Pin Descriptions

Pin No. Pin No.		No. Pin Name		Description				
1501A 1511		1501A/1511	1/0	Description				
1	1	1 OSC _{IN}		Oscillator input. A CMOS inverting gate input intended for connection to a crystal resonator for operation as an oscillator. The input has a $V_{CC}/2$ input threshold and can be driven from an external CMOS or TTL logic gate. May als be used as a buffer for an externally provided reference oscillator.				
2	3	OSC _{OUT}	0	Oscillator output.				
3	4	VP		Power supply for charge pump must be $\geq V_{CC}$.				
4	5	V _{CC}		Power supply voltage input. Input may range from 2.7V to 5.5V. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.				
5	6	Do	0	Internal charge pump output. For connection to a loop filter for driving the input of an external VCO.				
6	7	GND		Ground.				
7	8	LD	0	Lock detect. Output provided to indicate when the VCO frequency is in "lock". When the loop is locked, the pin's output is HIGH with narrow low pulses.				
8	10	f _{IN}	Ι	Prescaler input. Small signal input from the VCO.				
9	11	CLOCK	Ι	High impedance CMOS Clock input. Data is clocked in on the rising edge, into the various counters and registers.				
10	13	DATA	I	Binary serial data input. Data entered MSB first. LSB is control bit. High impedance CMOS input.				
11	14	LE	I	Load enable input (with internal pull-up resistor). When LE transitions HIGH, data stored in the shift registers is loaded into the appropriate latch (control bit dependent). Clock must be low when LE toggles high or low. See Serial Data Input Timing Diagram.				
12	15	FC	I	Phase control select (with internal pull-up resistor). When FC is LOW, the polarity of the phase comparator and charge pump combination is reversed.				
х	16	BISW	0	Analog switch output. When LE is HIGH, the analog switch is ON, routing the internal charge pump output through BISW (as well as through D_0).				
13		f _r	0	Monitor pin of phase comparator input. Programmable reference divider output				
14		fp	0	Monitor pin of phase comparator input. Programmable divider output.				
Х	17	fout	0	Monitor pin of phase comparator input. CMOS Output.				
15	18	φ _p	0	Output for external charge pump. $\phi_{\rm p}$ is an open drain N-channel transistor and requires a pull-up resistor.				
16	20	φr	0	Output for external charge pump. ϕ_{r} is a CMOS logic output.				
Х	2,9,12,19	NC		No connect.				

Absolute Maximum Ratings (Note 1)

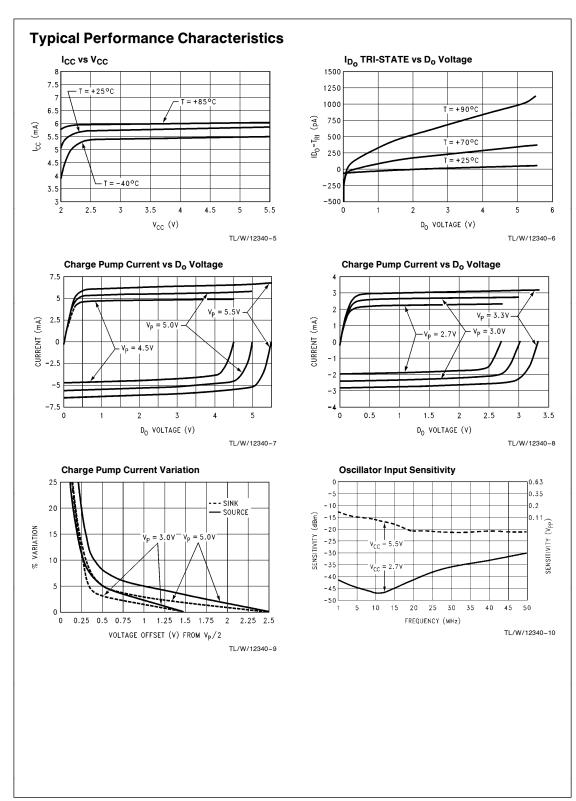
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Power Supply Voltage

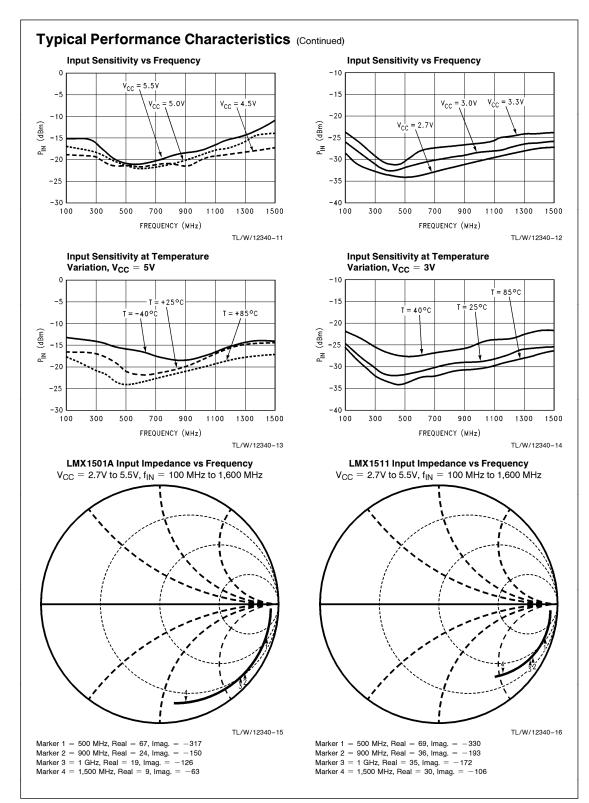
Fower Supply Vollage	
V _{CC}	-0.3V to +6.5V
VP	-0.3V to $+6.5V$
Voltage on Any Pin	
with $GND = 0V (V_I)$	-0.3V to $+6.5V$
Storage Temperature Range (T _S)	-65°C to +150°C
Lead Temperature (T _L) (solder, 4 sec.)	+260°C

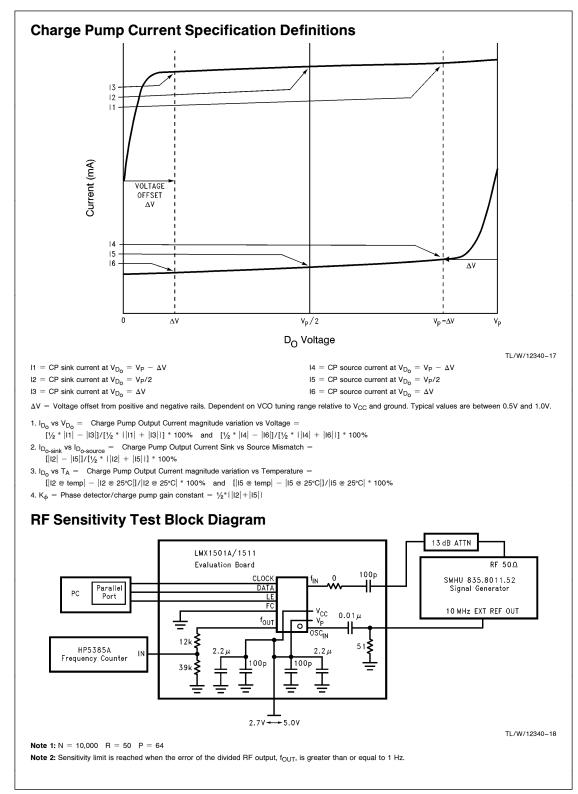
Recommended Operating Conditions

Power Supply Voltage	
V _{CC}	2.7V to 5.5V
V _P	V _{CC} to 5.5V
Operating Temperature (T _A)	-40°C to +85°C
Note 1: Absolute Maximum Ratings indica	te limits beyond which damage to
the device may occur. Operating Ratings	indicate conditions for which the
the device may occur. Operating Ratings	indicate conditions for which the

the device may occur. Operating Haungs indicate condutions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

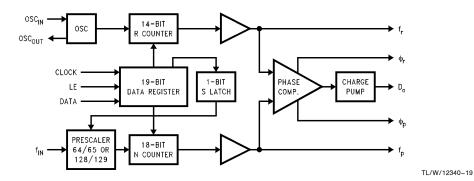

Electrical Characteristics V _{CC} = 5.0V, V _P = 5.0V; -40°C < T _A < 85°C, except as specific	ed
---	----

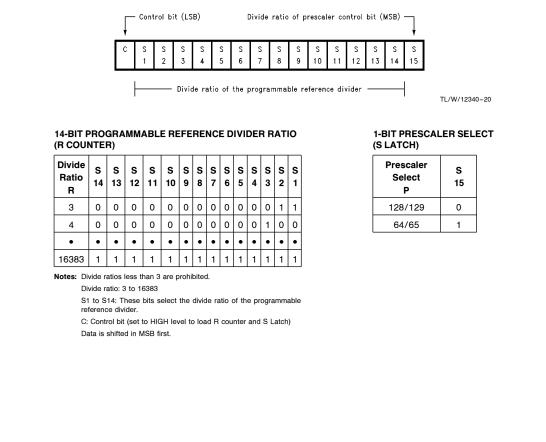

Symbol	Parameter	Conditions	Min	Тур	Max	Units
ICC	Power Supply Current	$V_{\rm CC} = 3.0 V$		6.0	8.0	mA
		$V_{CC} = 5.0V$		6.5	8.5	mA
f _{IN}	Maximum Operating Frequency		1.1			GHz
fosc	Maximum Oscillator Frequency		20			MHz
fφ	Maximum Phase Detector Frequency		10			MHz
Pf _{IN}	Input Sensitivity	$V_{CC} = 2.7V \text{ to } 5.5V$	-10		+6	dBm
V _{OSC}	Oscillator Sensitivity	OSCIN	0.5			V _{PP}
VIH	High-Level Input Voltage	*	0.7 V _{CC}			V
V _{IL}	Low-Level Input Voltage	*			0.3 V _{CC}	V
I _{IH}	High-Level Input Current (Clock, Data)	$V_{IH} = V_{CC} = 5.5V$	-1.0		1.0	μA
IIL	Low-Level Input Current (Clock, Data)	$V_{IL} = 0V, V_{CC} = 5.5V$	-1.0		1.0	μA
IIH	Oscillator Input Current	$V_{IH} = V_{CC} = 5.5V$			100	μA
IIL		$V_{IL} = 0V, V_{CC} = 5.5V$	-100			μA
I _{IH}	High-Level Input Current (LE, FC)	$V_{IH} = V_{CC} = 5.5V$	- 1.0		1.0	μA
۱ _{IL}	Low-Level Input Current (LE, FC)	$V_{II} = 0V, V_{CC} = 5.5V$	-100		1.0	μΑ


*Except f_{IN} and $\mathsf{OSC}_{\mathsf{IN}}$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{Do} -source	Charge Pump Output Current	$V_{D_0} = V_P/2$		-5.0		mA
I _{Do} -sink		$V_{D_0} = V_P/2$		5.0		mA
I _{Do} -Tri	Charge Pump TRI-STATE® Current	$\begin{array}{l} 0.5V \leq V_{D_{O}} \leq V_{P} - 0.5V \\ T = 25^{\circ}C \end{array} \label{eq:eq:V_D_O}$	-5.0		5.0	nA
V _{OH}	High-Level Output Voltage	$I_{OH} = -1.0 \text{ mA}^{**}$	$V_{CC} - 0.8$			V
V _{OL}	Low-Level Output Voltage	I _{OL} = 1.0 mA**			0.4	V
V _{OH}	High-Level Output Voltage (OSC _{OUT})	I _{OH} = -200 μA	$V_{CC} - 0.8$			V
V _{OL}	Low-Level Output Voltage (OSC _{OUT})	I _{OL} = 200 μA			0.4	V
I _{OL}	Open Drain Output Current (ϕ_p)	$V_{CC} = 5.0V, V_{OL} = 0.4V$	1.0			mA
I _{OH}	Open Drain Output Current (ϕ_p)	V _{OH} = 5.5V			100	μA
R _{ON}	Analog Switch ON Resistance (1511)			100		Ω
t _{CS}	Data to Clock Set Up Time	See Data Input Timing	50			ns
t _{CH}	Data to Clock Hold Time	See Data Input Timing	10			ns
t _{CWH}	Clock Pulse Width High	See Data Input Timing	50			ns
t _{CWL}	Clock Pulse Width Low	See Data Input Timing	50			ns
t _{ES}	Clock to Enable Set Up Time	See Data Input Timing	50			ns
t _{EW}	Enable Pulse Width	See Data Input Timing	50			ns

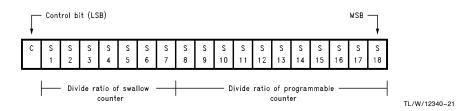
**Except OSC_{OUT}




Functional Description

The simplified block diagram below shows the 19-bit data register, the 14-bit R Counter and the S Latch, and the 18-bit N Counter (intermediate latches are not shown). The data stream is clocked (on the rising edge) into the DATA input, MSB first. If the Control Bit (last bit input) is HIGH, the DATA is transferred into the R Counter (programmable reference divider) and the S Latch (prescaler select: 64/65 or 128/129). If the Control Bit (LSB) is LOW, the DATA is transferred into the N Counter (programmable divider).

PROGRAMMABLE REFERENCE DIVIDER (R COUNTER) AND PRESCALER SELECT (S LATCH)


If the Control Bit (last bit shifted into the Data Register) is HIGH, data is transferred from the 19-bit shift register into a 14-bit latch (which sets the 14-bit R Counter) and the 1-bit S Latch (S15, which sets the prescaler: 64/65 or 128/129). Serial data format is shown below.

Functional Description (Continued)

PROGRAMMABLE DIVIDER (N COUNTER)

The N counter consists of the 7-bit swallow counter (A counter) and the 11-bit programmable counter (B counter). If the Control Bit (last bit shifted into the Data Register) is LOW, data is transferred from the 19-bit shift register into a 7-bit latch (which sets the 7-bit Swallow (A) Counter) and an 11-bit latch (which sets the 11-bit programmable (B) Counter). Serial data format is shown below.

Note: S8 to S18: Programmable counter divide ratio control bits (3 to 2047)

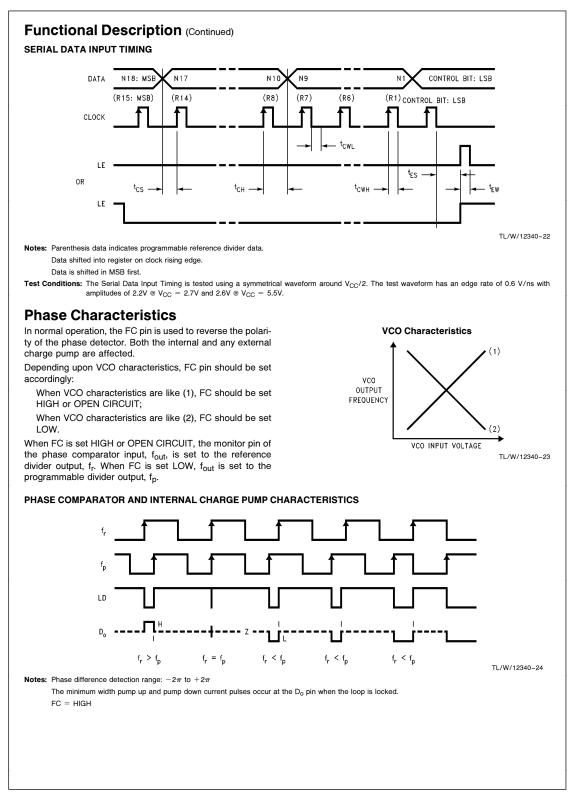
7-BIT SWALLOW COUNTER DIVIDE RATIO (A COUNTER)

Divide Ratio A	S 7	S 6	S 5	S 4	S 3	S 2	S 1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
•	•	•	•	•	•	•	•
127	1	1	1	1	1	1	1

Note: Divide ratio: 0 to 127 $B \ge A$

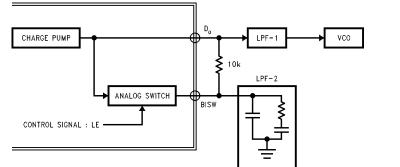
11-BIT PROGRAMMABLE COUNTER DIVIDE RATIO (B COUNTER)

Divide Ratio B	S 18	S 17	S 16	S 15	S 14	S 13	S 12	S 11	S 10	S 9	S 8
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
•	•	•	•	•	•	•	•	•	•	•	•
2047	1	1	1	1	1	1	1	1	1	1	1


Note: Divide ratio: 3 to 2047 (Divide ratios less than 3 are prohibited) $B \ge A$

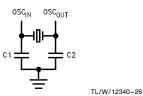
PULSE SWALLOW FUNCTION

 $f_{VCO} = [(P \times B) + A] \times f_{OSC}/R$

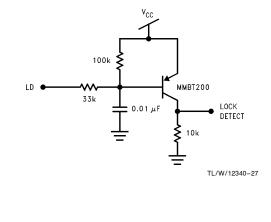

f_{VCO}: Output frequency of external voltage controlled oscillator (VCO)

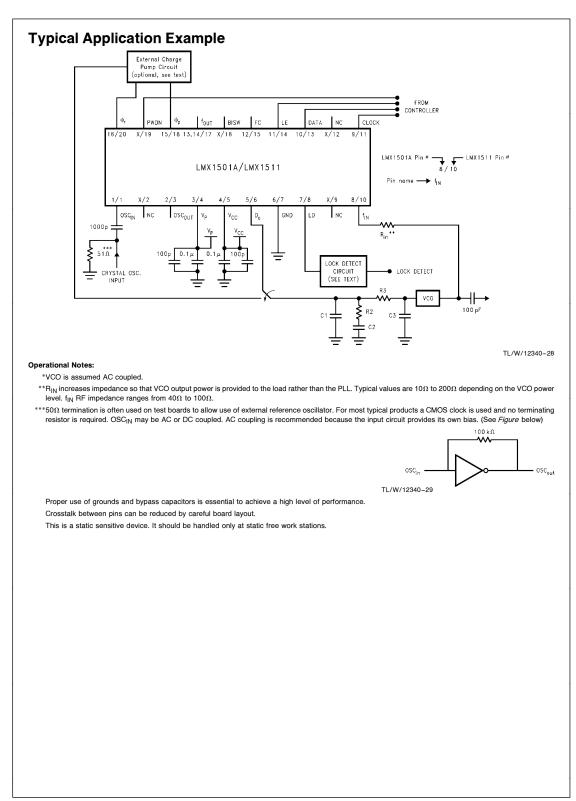
- B: Preset divide ratio of binary 11-bit programmable counter (3 to 2047)
- A: Preset divide ratio of binary 7-bit swallow counter (0 \leq A \leq 127, A \leq B)
- f_{OSC}: Output frequency of the external reference frequency oscillator
- R: Preset divide ratio of binary 14-bit programmable reference counter (3 to 16383)
- P٠ Preset modulus of dual modulus prescaler (64 or 128)

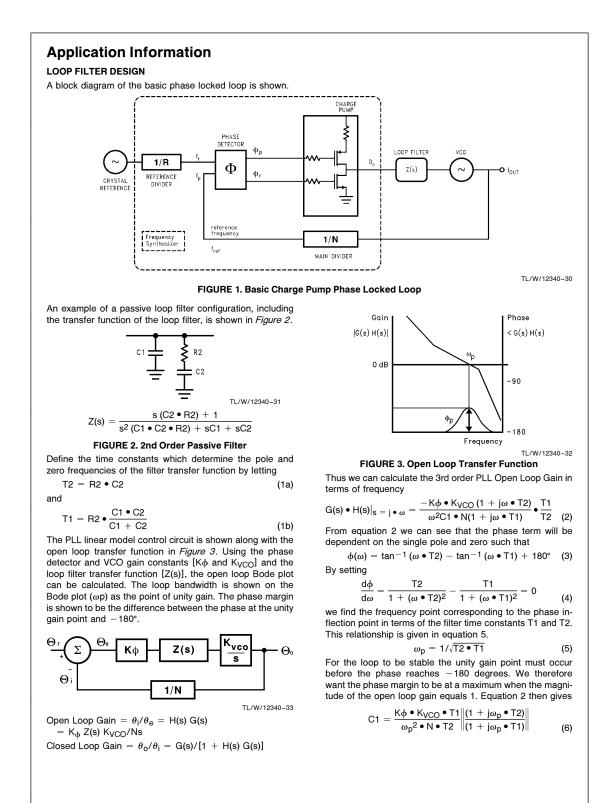
Analog Switch (1511 only)


The analog switch is useful for radio systems that utilize a frequency scanning mode and a narrow band mode. The purpose of the analog switch is to decrease the loop filter time constant, allowing the VCO to adjust to its new frequency in a shorter amount of time. This is achieved by adding another filter stage in parallel. The output of the charge pump is normally through the D_o pin, but when LE is set HIGH, the charge pump output also becomes available at BISW. A typical circuit is shown below. The second filter stage (LPF-2) is effective only when the switch is closed (in the scanning mode).

TL/W/12340-25


Typical Crystal Oscillator Circuit


A typical circuit which can be used to implement a crystal oscillator is shown below.



Typical Lock Detect Circuit

A lock detect circuit is needed in order to provide a steady LOW signal when the PLL is in the locked state. A typical circuit is shown below.

Application Information (Continued)

Therefore, if we specify the loop bandwidth, ω_p , and the phase margin, φ_p , Equations 1 through 6 allow us to calculate the two time constants, T1 and T2, as shown in equations 7 and 8. A common rule of thumb is to begin your design with a 45° phase margin.

$$T1 = \frac{\sec\phi_p - \tan\phi_p}{\omega_p}$$
(7)
$$T2 = \frac{1}{\omega_p^2 \bullet T1}$$
(8)

From the time constants T1, and T2, and the loop bandwidth, ω_p , the values for C1, R2, and C2 are obtained in equations 9 to 11.

$$C1 = \frac{T1}{T2} \bullet \frac{K\phi \bullet K_{VCO}}{\omega_p^2 \bullet N} \sqrt{\frac{1 + (\omega_p \bullet T2)^2}{1 + (\omega_p \bullet T1)^2}}$$
(9)
$$C2 = C1 \bullet \left(\frac{T2}{T1} - 1\right)$$
(10)
$$B2 = \frac{T2}{2}$$

$$R2 = \frac{T^2}{C2}$$
(11)

K_{VCO} (MHz/V) Voltage Controlled Oscil Tuning Voltage constant. The frequency vs voltage tuning ratio. Phase detector/charge pump gain Kφ (mA) constant. The ratio of the current output to the input phase differential. Main divider ratio. Equal to RFopt/fref Ν RF_{opt} (MHz) Radio Frequency output of the VCO at which the loop filter is optimized. Frequency of the phase detector inf_{ref} (kHz) puts. Usually equivalent to the RF channel spacing.

1

In choosing the loop filter components a trade off must be made between lock time, noise, stability, and reference spurs. The greater the loop bandwidth the faster the lock time will be, but a large loop bandwidth could result in higher reference spurs. Wider loop bandwidths generally improve close in phase noise but may increase integrated phase noise depending on the reference input, VCO and division ratios used. The reference spurs can be reduced by reducing the loop bandwidth or by adding more low pass filter stages but the lock time will increase and stability will decrease as a result.

THIRD ORDER FILTER

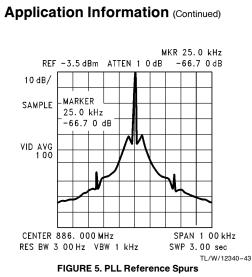
A low pass filter section may be needed for some applications that require additional rejection of the reference sidebands, or spurs. This configuration is given in *Figure 4*. In order to compensate for the added low pass section, the component values are recalculated using the new open loop unity gain frequency. The degradation of phase margin caused by the added low pass is then mitigated by slightly increasing C1 and C2 while slightly decreasing R2. The added attenuation from the low pass filter is:

$$ATTEN = 20 \log[(2\pi f_{ref} \bullet R3 \bullet C3)^2 + 1]$$
(12)
Defining the additional time constant as

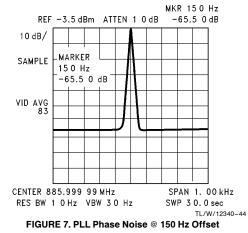
$$T3 = R3 \bullet C3 \tag{13}$$

Then in terms of the attenuation of the reference spurs added by the low pass pole we have

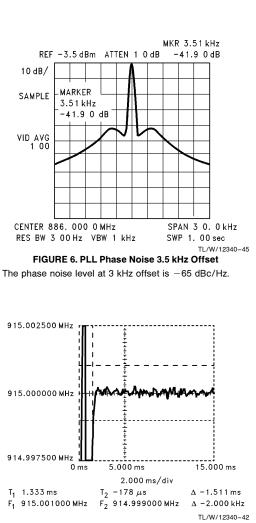
$$T3 = \sqrt{\frac{10^{ATTEN/20} - 1}{(2\pi \bullet f_{ref})^2}}$$
(14)


We then use the calculated value for loop bandwidth ω_c in equation 11, to determine the loop filter component values in equations 15–17. ω_c is slightly less than ω_p , therefore the frequency jump lock time will increase.

$$12 = \frac{1}{\omega_c^2 \bullet (T1 + T3)}$$
 (15)


$$\omega_{\rm c} = \frac{\tan\phi \bullet (T1 + T3)}{[(T1 + T3)^2 + T1 \bullet T3]} \bullet \left[\sqrt{1 + \frac{(T1 + T3)^2 + T1 \bullet T3}{[\tan\phi \bullet (T1 + T3)]^2}} - 1 \right]$$
(16)

$$C1 = \frac{T1}{T2} \bullet \frac{K_{\phi} \bullet K_{VCO}}{\omega_{c}^{2} \bullet N} \bullet \left[\frac{(1 + \omega_{c}^{2} \bullet T2^{2})}{(1 + \omega_{c}^{2} \bullet T1^{2})(1 + \omega_{c}^{2} \bullet T3^{2})} \right]^{\frac{1}{2}}$$
(17)


Application Information (Continued) Example #1 $K_{VCO} = 19.3 \text{ MHz/V}$ $K_{\varphi} = 5 \text{ mA}$ (Note 1) $RF_{opt} = 886 MHz$ $F_{ref} = 25 \text{ kHz}$ $N = RF_{opt}/f_{ref} = 35440$ $\omega_{p} = 2\pi * 5 \text{ kHz} = 3.1415\text{e}4$ $\phi_p = 43^\circ$ ATTEN = 10 dB $T1 = \frac{sec\varphi_p - tan\varphi_p}{\omega_p} = 1.38e{-5}$ $T3 = \sqrt{\frac{10^{(10/20)} - 1}{(2\pi \cdot 25e3)^2}} = 9.361e - 6$ $\omega_{\rm C} = \frac{(\tan 43^\circ) \bullet (1.38e - 5 + 9.361e - 6)}{[(1.38e - 5 + 9.361e - 6)^2 + 1.38e - 5 \bullet 9.361e - 6]}$ $\bullet \left[\sqrt{1 + \frac{(1.38e - 5 + 9.361e - 6)^2 + 1.38e - 5 \bullet 9.361e - 6}{[(\tan 43^\circ) \bullet (1.38e - 5 + 9.361e - 6)]^2}} - 1 \right]$ = 1.8101e4 $T2 = \frac{1}{(1.8101e4)^2 \bullet (1.38e-5 + 9.361e-6)} = 1.318e-4$ $C1 = \frac{1.38e - 5}{1.318e - 4} \frac{(5e - 3) \bullet 19.3e6}{(1.8101e4)^2 \bullet (35440)} \bullet \left[\frac{[1 + (1.8101e4)^2 \bullet (1.318e - 4)^2]}{[1 + (1.8101e4)^2 \bullet (1.38e - 5)^2] [1 + (1.8101e4)^2 \bullet (9.361e - 6)^2]}\right]^{\frac{1}{2}}$ = 2.153 nF $C2 = 2.153 \text{ nF} \left(\frac{1.318e - 4}{1.384e - 5} - 1\right) = 18.35 \text{ nF}$ ${\sf R2}=\frac{1.318e{-}4}{18.35e{-}9}=7.18~{\sf k}\Omega$ if we choose R3 = 120k; then C3 = $\frac{9.361e - 6}{120e3}$ = 78 pF. Converting to standard component values gives the follow-120 kΩ ing filter values, which are shown in Figure 4. C1 = 2200 pF 2200 pF : **§** 8.2 kΩ $\text{R2}=8.2\,\text{k}\Omega$ $C2 = 0.018 \, \mu F$. 0.018 μF $R3 = 120 k\Omega$ $C3 = 78 \, pF$ Note 1: See related equation for K_{φ} in Charge Pump Current Specification TL/W/12340-41 Definitions. For this example $V_p = 5.0V$. The value for K_{ϕ} can then be approximated using the curves in the Typical Performance Char-FIGURE 4. ~ 5 kHz Loop Filter acteristics for Charge Pump Current vs D_o Voltage. The units for K_φ are in mA. You may also use K_φ = (5 mA/2π rad), but in this case you must convert K_{VCO} to (rad/V) multiplying by 2π .

The reference spurious level is <-66 dBc, due to the loop filter attenuation and the low spurious noise level of the LMX1511.

The phase noise level at 150 Hz offset is $-75.5\ \mathrm{dBc/Hz}.$

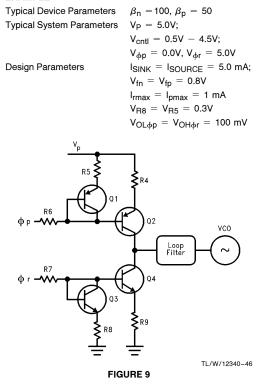
FIGURE 8. Frequency Jump Lock Time

Of concern in any PLL loop filter design is the time it takes to lock in to a new frequency when switching channels. *Figure 8* shows the switching waveforms for a frequency jump of 857 MHz–915 MHz. By narrowing the frequency span of the HP53310A Modulation Domain Analyzer enables evaluation of the frequency lock time to within ± 1 kHz. The lock time is seen to be < 1.6 ms for a frequency jump of 58 MHz.

Application Information (Continued) EXTERNAL CHARGE PUMP

The LMX PLLatimum series of frequency synthesizers are equipped with an internal balanced charge pump as well as outputs for driving an external charge pump. Although the superior performance of NSC's on board charge pump eliminates the need for an external charge pump in most applications, certain system requirements are more stringent. In these cases, using an external charge pump allows the designer to take direct control of such parameters as charge pump voltage swing, current magnitude, TRI-STATE leakage, and temperature compensation.

One possible architecture for an external charge pump current source is shown in *Figure 9*. The signals ϕ_p and ϕ_r in the diagram, correspond to the phase detector outputs of the LMX1501/1511 frequency synthesizers. These logic signals are converted into current pulses, using the circuitry shown in *Figure 9*, to enable either charging or discharging of the loop filter components to control the output frequency of the PLL.

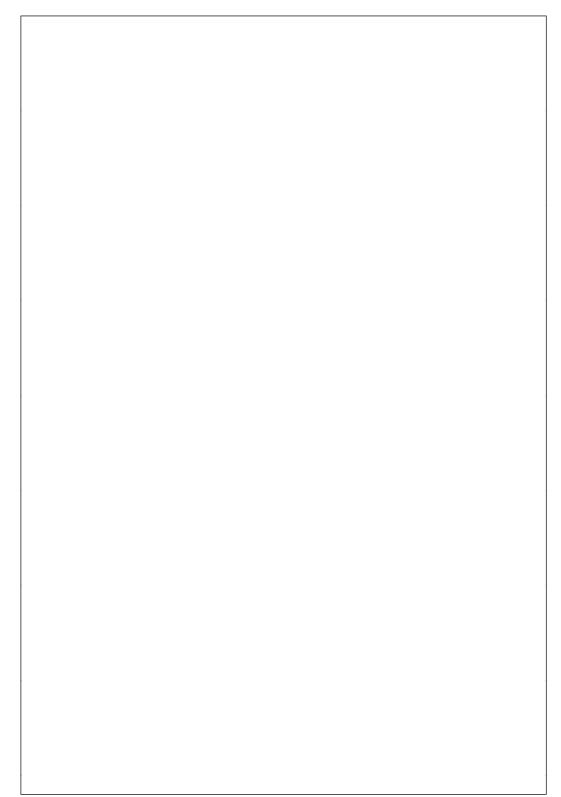

Referring to *Figure 9*, the design goal is to generate a 5 mA current which is relatively constant to within 5V of the power supply rail. To accomplish this, it is important to establish as large of a voltage drop across R5, R8 as possible without saturating Q2, Q4. A voltage of approximately 300 mV provides a good compromise. This allows the current source reference being generated to be relatively repeatable in the absence of good Q1, Q2/Q3, Q4 matching. (Matched transistor pairs is recommended.) The ϕ p and ϕ r outputs are rated for a maximum output load current of 1 mA while 5 mA current sources are desired. The voltages developed across R4, 9 will consequently be approximately 258 mV, or 42 mV < < R8, 5, due to the current density differences {0.026*1n (5 mA/1 mA)} through the Q1, Q2/Q3, Q4 pairs.

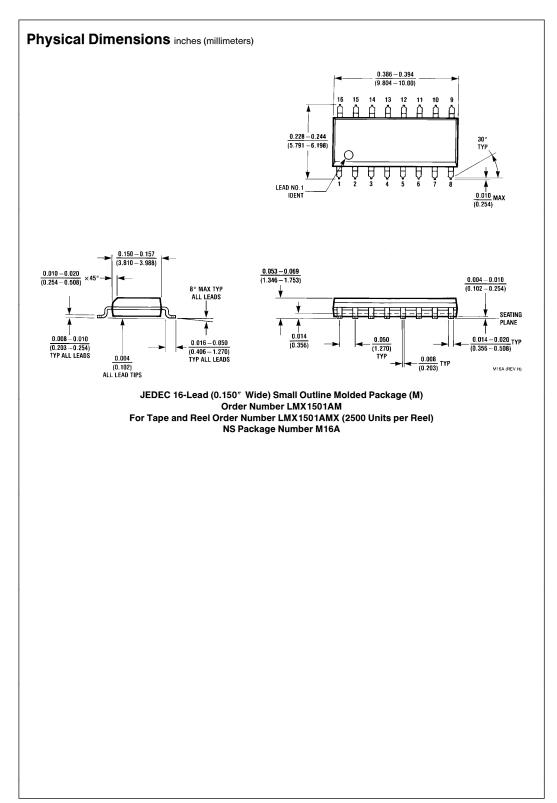
In order to calculate the value of R7 it is necessary to first estimate the forward base to emitter voltage drop (Vfn,p) of the transistors used, the V_{OL} drop of ϕ p, and the V_{OH} drop of ϕ r's under 1 mA loads. (ϕ p's V_{OL} < 0.1V and ϕ r;s V_{OH} < 0.1V.)

Knowing these parameters along with the desired current allow us to design a simple external charge pump. Separating the pump up and pump down circuits facilitates the nodal analysis and give the following equations.

$$\begin{split} \mathsf{R}_4 &= \frac{\mathsf{V}_{\mathsf{R}5} - \mathsf{V}_\mathsf{T} \bullet \mathsf{ln} \Big(\frac{\mathsf{lsource}}{\mathsf{i}_p \max} \Big)}{\mathsf{i}_{\mathsf{source}}} \\ \mathsf{R}_9 &= \frac{\mathsf{V}_{\mathsf{R}8} - \mathsf{V}_\mathsf{T} \bullet \mathsf{ln} \Big(\frac{\mathsf{i}_{\mathsf{sink}}}{\mathsf{i}_n \max} \Big)}{\mathsf{i}_{\mathsf{sink}}} \\ \mathsf{R}_5 &= \frac{\mathsf{V}_{\mathsf{R}5} \bullet (\beta_p + 1)}{\mathsf{i}_p \max} \bullet (\beta_p + 1) - \mathsf{i}_{\mathsf{source}}} \\ \mathsf{R}_8 &= \frac{\mathsf{V}_{\mathsf{R}8} \bullet (\beta_n + 1)}{\mathsf{i}_r \max} \bullet (\beta_n + 1) - \mathsf{i}_{\mathsf{sink}}} \\ \mathsf{R}_6 &= \frac{(\mathsf{V}_p - \mathsf{V}_{\mathsf{VOL}\phi p}) - (\mathsf{V}_{\mathsf{R}5} + \mathsf{Vfp})}{\mathsf{i}_p \max} \\ \mathsf{R}_7 &= \frac{(\mathsf{V}_P - \mathsf{V}_{\mathsf{VOH}\phi r}) - (\mathsf{V}_{\mathsf{R}8} + \mathsf{Vfn})}{\mathsf{i}_{\mathsf{max}}} \end{split}$$

EXAMPLE


Therefore select


$$\mathsf{R}_4 = \mathsf{R}_9 = \frac{0.3 V - 0.026 \bullet 1n(5.0 \text{ mA}/1.0 \text{ mA})}{5 \text{ mA}} = 51.6 \Omega$$

$$R_{5} = \frac{0.3V \cdot (50 + 1)}{1.0 \text{ mA} \cdot (50 + 1) - 5.0 \text{ mA}} = 332\Omega$$

$$R_{8} = \frac{0.3V \cdot (100 - 1)}{1.0 \text{ mA} \cdot (100 + 1) - 5.0 \text{ mA}} = 315.6\Omega$$

$$R_{6} = R_{7} = \frac{(5V - 0.1V) - (0.3V + 0.8V)}{1.0 \text{ mA}} = 3.8 \text{ k}\Omega$$

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.