LMX3161

Single Chip Radio Transceiver

General Description

The LMX3161 Single Chip Radio Transceiver is a monolithic， integrated radio transceiver optimized for use in a Digital En－ hanced Cordless Telecommunications（DECT）system．It is fabricated using National＇s ABiC V BiCMOS process （ $\mathrm{f}_{\mathrm{T}}=18 \mathrm{GHz}$ ）．
The LMX3161 contains phase locked loop（PLL），transmit and receive functions．The 1．1 GHz PLL block is shared be－ tween transmit and receive section．The transmitter includes a frequency doubler，and a high frequency buffer．The re－ ceiver consists of a 2.0 GHz low noise mixer，an intermediate frequency（IF）amplifier，a high gain limiting amplifier，a fre－ quency discriminator，a received signal strength indicator （RSSI），and an analog DC compensation loop．The PLL， doubler，and buffers can be used to implement open loop modulation along with an external VCO and loop filter．The circuit features on－chip voltage regulation to allow supply voltages ranging from 3.0 V to 5.5 V ．Two additional voltage regulators provide a stable supply source to external dis－ crete stages in the Tx and Rx chains．
The IF amplifier，high gain limiting amplifier，and discrimina－ tor are optimized for 110 MHz operation，with a total IF gain of 85 dB ．The single conversion receiver architecture pro－
vides a low cost，high performance solution for communica－ tions systems．The RSSI output may be used for channel quality monitoring
The Single Chip Radio Transceiver is available in a 48－pin $7 \mathrm{~mm} \times 7 \mathrm{~mm} \times 1.4 \mathrm{~mm}$ PQFP surface mount plastic pack－ age．

Features

－Single chip solution for DECT RF transceiver
－RF sensitivity to -93 dBm ；RSSI sensitivity to -100 dBm
－Two regulated voltage outputs for discrete amplifiers
－High gain（ 85 dB ）intermediate frequency strip
－Allows unregulated $3.0 \mathrm{~V}-5.5 \mathrm{~V}$ supply voltage
－Power down mode for increased current savings
－System noise figure 6.5 dB （typ）

Applications

■ Digital Enhanced Cordless Telecommunications（DECT）
－Personal wireless communications（PCS／PCN）
－Wireless local area networks（WLANs）
－Other wireless communications systems

Block Diagram

LMX3161 Pin Diagram

Top View Order Number LMX3161VBH or LMX3161VBHX See NS Package Number VBH48A

LMX3161 Pin Diagram (Continued)

Pin No.	Pin Name	I/0	Description
1	V_{cc}	-	Power supply for CMOS section of PLL and ESD bussing.
2	MIXER $_{\text {OUT }}$	0	IF output from the mixer.
3	V_{cc}	-	Power supply for mixer section.
4	GND	-	Ground.
5	$\mathrm{RF}_{\text {IN }}$	1	RF input to the mixer.
6	GND	-	Ground.
7	Tx $\mathrm{V}_{\text {reg }}$	-	Regulated power supply for external PA gain stage.
8	V_{Cc}	-	Power supply for analog sections of PLL and doubler.
9	GND	-	Ground.
10	Tx ${ }_{\text {OUT }}$	0	Frequency doubler output.
11	GND	-	Ground.
12	V_{Cc}	-	Power supply for analog sections of PLL and doubler.
13	GND	-	Ground.
14	GND	-	Ground.
15	f_{in}	1	RF Input to PLL and frequency doubler.
16	CE	1	Chip Enable. Pulling LOW powers down entire chip. Taking CE HIGH powers up the appropriate functional blocks depending on the state of bits F6, F7, F11, and F12 programmed in F-latch. It is necessary to initialize the internal registers once, after the power up reset. The registers' contents are kept even in power-down condition.
17	V_{P}	-	Power supply for charge pump.
18	D	0	Charge pump output. For connection to a loop filter for driving the input of an external VCO.
19	V_{cc}	-	Power supply for CMOS section of PLL and ESD bussing.
20	GND	-	Ground.
21	OUT 0	0	Programmable CMOS output. Refer to Function Register Programming Description section for details.
22	Rx PD/OUT 1	1/0	Receiver power down control input or programmable CMOS output. Refer to Function Register Programming Description section for details.
23	Tx PD/OUT 2	1/0	Transmitter power down control input or programmable CMOS output. Refer to Function Register Programming Description section for details.
24	PLL PD	1	PLL power down control input. LOW for PLL normal operations, and HIGH for PLL power saving.
25	CLOCK	1	MICROWIRE ${ }^{\text {TM }}$ clock input. High impedance CMOS input with Schmitt Trigger.
26	DATA	1	MICROWIRE data input. High impedance CMOS input with Schmitt Trigger.
27	LE	1	MICROWIRE load enable input. High impedance CMOS input with Schmitt Trigger.
28	$\mathrm{OSC}_{\text {IN }}$	1	Oscillator input. High impedance CMOS input with feedback.
29	$\overline{\text { S FIELD }}$	1	DC compensation circuit enable. While LOW, the DC compensation circuit is enabled and the threshold is updated through the DC compensation loop. While HIGH, the switch is opened, and the comparator threshold is held by the external capacitor.
30	RSSIout	0	Received signal strength indicator (RSSI) output.
31	THRESH	0	Threshold level to external comparator.
32	DC COMP ${ }_{\text {IN }}$	1	Input to DC compensation circuit.
33	$\mathrm{DISC}_{\text {OUT }}$	0	Demodulated output of discriminator.
34	GND	-	Ground.
35	V_{Cc}	-	Power supply for the discriminator circuit.
36	QUAD $_{\text {IN }}$	1	Quadrature input for tank circuit.
37	V_{CC}	-	Power supply for limiter output stage.
38	GND	-	Ground.
39	V_{cc}	-	Power supply for limiter gain stages.
40	GND	-	Ground.
41	V_{cc}	-	Power supply for IF amplifier gain stages.

Pin No.	Pin Name	I/O	Description
42	LIM $_{\text {IN }}$	I	IF input to the limiter.
43	GND	-	Ground.
44	$\mathrm{IF}_{\text {OUT }}$	O	IF output from IF amplifier.
45	V_{CC}	-	Power supply for IF amplifier output.
46	GND	-	Ground.
47	$\mathrm{IF}_{\text {IN }}$	I	IF input to IF amplifier.
48	$\mathrm{Rx} \mathrm{V}_{\mathrm{REG}}$	-	Regulated power supply for external LNA stages.

Electrical Characteristics

The following specifications are guaranteed for $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
	Current Consumption					
$\mathrm{I}_{\mathrm{DD}, \mathrm{RX}}$	-Open-Loop Receive Mode	PLL \& TX chain powered down	-	50	60	mA
$\mathrm{I}_{\mathrm{DD}, \mathrm{TX}}$	-Open-Loop Transmit Mode	PLL \& RX chain powered down	-	27	37	mA
$\mathrm{I}_{\mathrm{DD}, \mathrm{PLL}}$	-Closed-Loop PLL Mode	RX \& TX chain powered down	-	6	8	mA
$\mathrm{I}_{\text {PD }}$	-Power Down Mode		-	-	70	$\mu \mathrm{A}$
MIXER		$\mathrm{f}_{\text {RF }}=1.89 \mathrm{GHz}, \mathrm{f}_{\mathrm{IF}}=110 \mathrm{MHz}, \mathrm{f}_{\text {LO }}=1780 \mathrm{MHz}\left(\mathrm{f}_{\mathrm{IN}}=890 \mathrm{MHz}\right)$				
$\mathrm{f}_{\text {RF }}$	RF Frequency Range	(Note 3)	1.7	-	2.0	GHz
f_{IF}	IF Frequency	(Note 4)	-	110	-	MHz
$\mathrm{Z}_{\text {IN }}$	Input Impedance, $\mathrm{RF}_{\text {IN }}$		-	15-55	-	Ω
$\mathrm{Z}_{\text {OUT }}$	Output Impedance, Mixer Out		-	${ }^{160-\mathrm{j} 70}$	-	Ω
NF	Noise Figure (Single Side Band)	(Notes 5, 6)	-	10	14	dB
G_{C}	Conversion Gain	(Note 5)	14	17	-	dB
$\mathrm{P}_{1 \mathrm{~dB}}$	Input 1dB Compression Point	(Note 5)	-24	-20	-	dBm
OIP3	Output 3rd Order Intercept Point	(Note 5)	-	7.5	-	dBm
$\mathrm{F}_{\text {IN }}-\mathrm{RF}$	Fin to RF Isolation	$\mathrm{F}_{\text {IN }}=890 \mathrm{MHz}$	-	-30	-	dB
		$\mathrm{f}_{\mathrm{IN}}=1780 \mathrm{MHz}$	-	-10.6	-	dB
		$\mathrm{f}_{\mathrm{IN}}=2670 \mathrm{MHz}$	-	-30	-	dB
$\overline{F_{\text {IN }}-\mathrm{IF}}$	Fin to IF Isolation	$\mathrm{f}_{\mathrm{IN}}=890 \mathrm{MHz}$	-	-30	-	dB
		$\mathrm{f}_{\mathrm{IN}}=1780 \mathrm{MHz}$	-	-30	-	dB
		$\mathrm{f}_{\mathrm{IN}}=2670 \mathrm{MHz}$	-	-30	-	dB
RF-IF	RF to IF Isolation	$\mathrm{P}_{\text {IN }}=0$ to -85 dB	-	-30	-	dB
IF AMPLIFIER		$\mathrm{f}_{\text {IN }}=110 \mathrm{MHz}$				
NF	Noise Figure			8	11	dB
A_{V}	Gain	(Note 7)	15	24	-	dB
$\mathrm{Z}_{\text {IN }}$	Input Impedance		-	150-j120	-	Ω
$\mathrm{Z}_{\text {OUT }}$	Output Impedance		-	${ }^{190-\mathrm{j} 20}$	-	Ω
IF LIMITER		$\mathrm{f}_{\mathrm{IN}}=110 \mathrm{MHz}$				
Sens	Limiter/Discriminator Sensitivity	$\mathrm{BER}=10^{-3}$	-	-65	-	dBm
$\mathrm{IF}_{\text {IN }}$	IF Limiter Input Impedance		-	100--300	-	Ω
DISCRIMINATOR		$\mathrm{f}_{\mathrm{IN}}=110 \mathrm{MHz}$				
	Disc Gain	1X Mode	-	10	-	$\mathrm{mV} /{ }^{\circ}$
	($\mathrm{mV} /{ }^{\circ}$ of Phase Shift from Tank Circuit)	3X Mode	-	33	-	$\mathrm{mV} /{ }^{\circ}$
$\mathrm{V}_{\text {OUT }}$	Discriminator Output Peak to Peak Voltage	1X Mode (Note 8)	80	160	-	mV
		3X Mode (Note 8)	400	580	-	mV
$\mathrm{V}_{\text {OS }}$	Disc. Output DC Voltage	Nominal (Note 10)	1.2		1.82	V
DISC $_{\text {OUT }}$	Disc. Output Impedance		-	300	-	Ω

Electrical Characteristics (Continued)

voltage regulator

V_{0}	Output Voltage	$\mathrm{I}_{\text {LOAD }}=5 \mathrm{~mA}$	2.55	2.75	2.90	V
DIGITAL INPUT/OUTPUT PINS						
V_{IH}	High Level Input Voltage		2.4	-	V_{cc}	V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage		0.0	-	0.8	V
${ }_{\text {IH }}$	Input Current	GND $<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CC }}$	-10	-	10	$\mu \mathrm{A}$
V_{OH}	High Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$	2.4	-	-	V
V_{OL}	Low Level Output Voltage	$\mathrm{l}_{\mathrm{oL}}=0.5 \mathrm{~mA}$	-	-	0.4	V

Note 3: The mixer section is tested at 1.89 GHz , and it is guaranteed by design to operate within $1.7-2.0 \mathrm{GHz}$ range.
Note 4: The IF section of this device is designed for optimum operating performance at 110 MHz to meet the DECT specifications.
Note 5: The matching network used on RFIN consists of a series 3.3 pF capacitance into the pin. The matching circuit used on MIXEROUT consists of a series 100 nH inductance and a shunt 12 pF capacitance into the pin.
Note 6: Noise Figure measurements are made with 890 MHz BPF on the $\mathrm{F}_{\text {IN }}$ input and matching networks on RF $_{\text {IN }}$ and MIXER OUT .
Note 7: The matching network used on IFIN consists of a series 33 nH inductance and a shunt 1.8 pF capacitance into the pin.
Note 8: The discriminator is with the $D C$ level centered at 1.5 V . The unloaded Q of the tank is 40 .
Note 9: The frequency synthesizer section is guaranteed by design to operate within $500-1200 \mathrm{MHz}$ range.
Note 10: Nominal refers to zero DC offsets programmed for the discriminator.
Note 11: It depends on loss of inter-stage filter. These specifications are for an inter-stage filter with a loss of 8 dB .
Note 12: The frequency synthesizer section is guaranteed by design to operate for $\mathrm{OSC}_{\mathbb{N}}$ input frequency within $5-20 \mathrm{MHz}$ range and minimun amplitude of 0.5 V_{pp}.

Electrical Characteristics (Continued)

Note 13: The doubler section is tested at 1.89 GHz , and it is guaranteed by design to operate within $1.7-1.9 \mathrm{GHz}$ range.
Note 14: See Function Register Programming Description for Icp_{0} description
Note 15: Tested in a 50Ω environment.

AC Timing Characteristics

Serial Data Input Timing

TEST CONDITIONS: The Serial Data Input Timing is tested using a symmetrical waveform around $\mathrm{V}_{\mathrm{CC}} / 2$. The test waveform has an skew rate of $0.6 \mathrm{~V} / \mathrm{ns}$.

Notes: Parenthesis data indicates programmable reference divider data.
Data shifted into register on clock rising edge.
Data is shifted in MSB first.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
MICROWIRE $^{\text {TM }}$ Interface						
t_{CS}	Data to Clock Set Up Time	Refer to Test Condition.	50	-	-	ns
t_{CH}	Data to Clock Hold Time	Refer to Test Condition.	10	-	-	ns
$\mathrm{t}_{\mathrm{CWH}}$	Clock Pulse Width High	Refer to Test Condition.	50	-	-	ns
$\mathrm{t}_{\mathrm{CWL}}$	Clock Pulse Width Low	Refer to Test Condition.	50	-	-	ns
t_{ES}	Clock to Load Enable Set Up Time	Refer to Test Condition.	50	-	-	ns
t_{EW}	Load Enable Pulse Width	Refer to Test Condition.	50	-	-	ns

PLL Functional Description

The simplified block diagram below shows the building blocks of frequency synthesizer and all internal registers, which are 20-bit data register, 18 -bit F-latch, 12 -bit N -counter, and 6 -bit R-counter.

DS012815-4
The DATA stream is clocked into the data register on the rising edge of CLOCK signal, MSB first. The last two bits are the control bits to indicate which register to be written. Upon the rising edge of the LE (Load Enable) signal, the rest of data bits is transferred to the addressed register accordingly. The decoding scheme of the two control bits is as follows:

Control Bits		Register	
C2	C1		
0	0	N-Counter	
1	0	R-Counter	
X	1	F-Latch	

Note: X = Don't Care Condition

Programmable Feedback Divider (N-Counter)

The N -counter consists of the 6-bit swallow counter (A-counter) and the 6-bit programmable counter (B-counter). When the control bits are " 00 ", data is transferred from the 20 -bit shift register into two 6 -bit latches. One latch sets the A-counter while the other sets the B-counter. The serial data format is shown below.

Note: X = Don't Care Condition

Swallow Counter Divide Ratio (A-Counter)

Divide Ratio, A	N6	N5	N4	N3	N2	N1
0	0	0	0	0	0	0
1	0	0	0	0	0	1
$*$	$*$	$*$	$*$	$*$	$*$	$*$
63	1	1	1	1	1	1

Note: Divide ratio must be from 0 to 63 , and B must be \geq A.

Programmable Counter Divide Ratio (B-Counter)

Divide Ratio, B	N12	N11	N10	N9	N8	N7
3	0	0	0	0	1	1
4	0	0	0	1	0	0
$*$	$*$	$*$	$*$	$*$	$*$	$*$
63	1	1	1	1	1	1

Note: Divide ratio must be from 3 to 63 , and B must be \geq A.

Programmable Reference Divider (R-Counter)

If the control bits are " 10 ", data is transferred from the 20 -bit shift register into a latch, which sets the 6 -bit R-counter. The serial data format is shown below.

Note: $\mathrm{X}=$ Don't Care Condition

Reference Counter Divide Ratio (R-Counter)

Divide Ratio, R	R6	R5	R4	R3	R2	R1
3	0	0	0	0	1	1
4	0	0	0	1	0	0
$*$	$*$	$*$	$*$	$*$	$*$	$*$
63	1	1	1	1	1	1

Note: Divide ratio must be from 3 to 63 .

Pulse Swallow Function

$$
f_{v c o}=\frac{[(P \cdot B)+A] \cdot f_{\text {osc }}}{R}
$$

$f_{v c o}$: Output frequency of external voltage controlled oscillator (VCO)
B : \quad Preset divide ratio of binary 6 -bit programmable counter (3 to 63)
A: Preset divide ratio of binary 6-bit swallow counter ($0 \leq \mathrm{A} \leq \mathrm{P}, \mathrm{A} \leq \mathrm{B}$)
$f_{\text {Osc }}$: Output frequency of the external reference frequency oscillator
R : \quad Preset divide ratio of binary 6 -bit programmable reference counter (3 to 63)
P : Preset modulus of dual modulus prescaler (32 or 64)

Receiver Functional Description

The simplified block diagram below shows the mixer, IF amplifier, limiter, and discriminator. In addition, the DC compensation circuit, doubler, and voltage regulator for an external LNA stage are shown.

Note: The receiver can be powered down, either by hardware through the Rx PD pin, or by software through the programming of F6 bit in F-Latch. The power down control method is determined by the settings of F11 and F12 in F-Latch. (Refer to Function Register Programming Description section for details.)

Transmitter Functional Description

The simplified block diagram below shows the doubler and voltage regulator for an external transmit gain stage.

Note: The transmitter can be powered down, either by hardware through the Tx PD pin, or by software through the programming of F7 bith in F-Latch. The power down control method is determined by the settings of F11 and F12 in F-Latch. (Refer to Function Register Programming Description section for details.)

Function Register Programming Description (F-Latch)

If the control bits are " 1 X ", data is transferred from the 20 -bit shift register into the 18 -bit F-latch. Serial data format is shown below.

Note: X = Don't Care Condition
Various modes of operation can be programmed with the function register bits F1-F18, including the phase detector polarity, charge pump TRI-STATE ${ }^{\circledR}$ and CMOS outputs. In addition, software or hardwire power down modes can be specified with bits F11 and F12.

Mode Control Bit	Model Control Description	Setting to " 0 " to Select	Setting to "1" to Select
F1	Prescaler modules select.	32/33	64/65
F2	Phase detector polarity. It is used to reverse the polarity of the phase detector according to the VCO characteristics.	Negative VCO Characteristics	Positive VCO Characteristics
F3	Charge pump current gain select.	LOW Charge Pump Current ($1 \mathrm{X} \mathrm{I}_{\mathrm{cpo}}$).	HIGH Charge Pump Current ($4 \mathrm{X} \mathrm{I}_{\mathrm{cpo}}$).
F4	TRI-STATE charge pump output.	Normal Operation	Force to TRI-STATE
F5	Reserved. Setting to "0" always.	-	-
F6	Receive chain power down control. Software power down can only be activated when both F11 and F12 are set to "0".	Power Up RX Chain	Power Down RX Chain
F7	Transmit chain power down control. Software power down can only be activated when both F11 and F12 are set to "0".	Power Up TX Chain	Power Down TX Chain
F8	Out 0 CMOS output.	OUT 0 = LOW	OUT 0 = HIGH
F9	Out 1 CMOS output. Functions only in software power down mode, when both F11 and F12 are set to " 0 ".	OUT 1 = LOW	OUT 1 = HIGH
F10	Out 2 CMOS output. Functions only in software power down mode, when both F11 and F12 are set to "0".	OUT 2 = LOW	OUT 2 = HIGH
$\begin{aligned} & \hline \text { F11 } \\ & \text { F12 } \end{aligned}$	Power down mode select. Set both F11 and F12 to "0" for software power down mode. Set both F11 and F12 to "1" for hardwire power down mode. Other combinations are reserved for test mode.	Software Power Down	Hardware Power Down
F13	Demodulator gain select	1X Gain Mode	3X Gain Mode
F14	Demodulator DC level shift +/- level shifting polarity	Set Negative Polarity	Set Positive Polarity

Function Register Programming Description (F-Latch) (Continued)			
Mode Control Bit	Model Control Description	Setting to "0" to Select	Setting to "1" to Select
F15	Demodulator DC level shift of 1.000V	No Shift	Shift the DC Level by 1.000 V
F16	Demodulator DC level shift of 0.500V	No Shift	Shift the DC Level by 0.500 V
F17	Demodulator DC level shift of 0.250V	No Shift	Shift the DC Level by 0.250 V
F18	Demodulator DC level shift of 0.125V	No Shift	Shift the DC Level by 0.125 V

Power Down Mode/Control Table

Software Power Down Mode (F11=F12=0)		Hardwire Power Down Mode (F11=F12=1)			
Pin/Bit	Setting to "0" means	Setting to "1" means	Pin/Bit	Setting to "0" means	Setting to "1" means
F6	Receiver ON	Receiver OFF	Rx PD	Receiver OFF	Receiver ON
F7	Transmitter ON	Transmitter OFF	Tx PD	Transmitter OFF	Transmitter ON
PLL PD	PLL ON	PLL OFF	PLL PD	PLL ON	PLL OFF
CE	LMX3161 OFF	LMX3161 ON	CE	LMX3161 OFF	LMX3161 ON

Loop Filter Design Consideration

FIGURE 1. Conventional PLL Architecture

Loop Gain Equations

A linear control system model of the phase feedback for a PLL in the locked state is shown in Figure 2. The open loop gain is the product of the phase comparator gain $\left(\mathrm{K}_{\phi}\right)$, the VCO gain ($\mathrm{K}_{\mathrm{vco}} / \mathrm{s}$), and the loop filter gain $\mathrm{Z}(\mathrm{s})$ divided by the gain of the feedback counter modulus (N). The passive loop filter configuration used is displayed in Figure 3, while the complex impedance of the filter is given in Equation (2).

FIGURE 2. PLL Linear Model

FIGURE 3. Passive Loop Filter

PASSIVE LOOP FILTER

$$
\begin{gather*}
\text { Open loop gain }=\mathrm{H}(\mathrm{~s}) \mathrm{G}(\mathrm{~s})= \\
\theta \mathrm{i} / \theta \mathrm{e}=\mathrm{K}_{\phi} \mathrm{Z}(\mathrm{~s}) \mathrm{K} \mathrm{vco} / \mathrm{Ns} \tag{1}\\
Z(\mathrm{~s})=\frac{\mathrm{s}(C 2 \bullet R 2)+1}{\mathrm{~s}^{2}(C 1 \bullet C 2 \bullet R 2)+\mathrm{sC} 1+\mathrm{s} C 2} \tag{2}
\end{gather*}
$$

The time constants which determine the pole and zero frequencies of the filter transfer function can be defined as

$$
\begin{equation*}
T_{1}=R 2 \cdot \frac{C 1 \cdot C 2}{C 1+C 2} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
T 2=R 2 \cdot C 2 \tag{4}
\end{equation*}
$$

The 3rd order PLL Open Loop Gain can be calculated in terms of frequency, ω, the filter time constants T1 and T2, and the design constants $\mathrm{K}_{\phi}, \mathrm{K}_{\mathrm{vco}}$, and N .

$$
\begin{equation*}
\left.G(S) \bullet H(S)\right|_{S=j \bullet \omega} \frac{-K_{\phi} \bullet K_{v C O}(1+j \omega \bullet T 2)}{\omega^{2} C 1 \bullet N(1+j \omega \bullet T 1)} \bullet \frac{T 1}{T 2} \tag{5}
\end{equation*}
$$

From Equations (3), (4) we can see that the phase term will be dependent on the single pole and zero such that the phase margin is determined in Equation (6).

$$
\begin{equation*}
\phi(\omega)=\tan ^{-1}(\omega \cdot T 2)-\tan ^{-1}(\omega \cdot T 1)+180^{\circ} \tag{6}
\end{equation*}
$$

Physical Dimensions inches (millimeters) unless otherwise noted

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Asia Pacific Customer	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	Response Group	Tel: 81-3-5639-7560
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5639-7507
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 8585	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +49 (0) 1 80-532 7832	Email: sea.support@nsc.com	
	Français Tel: +49 (0) 1 80-532 9358		
www.national.com	Italiano Tel: +49 (0) 1 80-534 1680		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

