查询LP3000供应商 捷多邦,专业PCB打样工厂 24小时加急出货 **Filtronic PV3000** 3000 Solid State **2W Power PHEMT** DRAIN PAD (x4) **FEATURES** +33.5 dBm Typical Power at 18 GHz SOURCE BOND PAD (x2) 7 dB Typical Power Gain at 18 GHz +30.5 dBm at 3.3V Battery Voltage Low Intermodulation Distortion 45% Power-Added-Efficiency at 18 GHz WWW.DZSC.CON GATE PAD DIE SIZE: 28.3 x 16.5 mils (720 x 420 µm) (x4) DIE THICKNESS: 2.6 mils (65 µm typ.)

DESCRIPTION AND APPLICATIONS

The LP3000 is an Aluminum Gallium Arsenide / Indium Gallium Arsenide (AlGaAs/InGaAs) Pseudomorphic High Electron Mobility Transistor (PHEMT), utilizing an Electron-Beam direct-write 0.25 µm by 3000 µm Schottky barrier gate. The recessed "mushroom" gate structure minimizes parasitic gate-source and gate resistances. The epitaxial structure and processing have been optimized for reliable high-power applications. The LP3000 also features Si₃N₄ passivation and is available with plated source via-holes (LPV 3000) as an option for improved high-frequency performance. Also available in a ceramic flanged package (P100) and ball grid array package.

Typical applications include commercial and military high-performance power amplifiers, including SATCOM uplink transmitters, PCS/Cellular low-voltage high-efficiency output amplifiers, and medium-haul digital radio transmitters. The LPV 3000/LP 3000 may be procured in a variety of grades, depending upon specific user requirements. Standard lot screening is patterned after MIL-STD-19500, JANC grade. Space-level screening to FSS JANS grade is also available.

PERFORMANCE SPECIFICATIONS (T_A = 25^{\circ}C)

SYMBOLS	PARAMETERS		MIN	ТҮР	MAX	UNITS
I _{DSS}	Saturated Drain-Source Current $V_{DS} = 2V V_{GS} = 0V$	A 1814	800	1060	1100	mA
P _{1dB}	Output Power at 1dB Gain Compression $V_{DS} = 8.0V$, $I_{DS} = 50\% I_{DSS}$ (LP. LPV)	f = 18 GHz	33.0	33.5		dBm
G _{1dB}	Power Gain at 1dB Gain Compression $V_{DS} = 8.0V, I_{DS} = 50\% I_{DSS}$ (LP) $V_{DS} = 8.0V, I_{DS} = 50\% I_{DSS}$ (LPV)	f = 18 GHz f = 18 GHz	4.0 6.0	6.0 7.0		dB dB
η _{ADD}	Power-Added Efficiency (typ. for Class A operation)			45		%
IMAX	Maximum Drain-Source Current	$V_{DS} = 2V V_{GS} = +1V$		1700	5.03	mA
G _M	Transconductance	$V_{DS} = 2V V_{GS} = 0V$	725	900	C.COV	mS
V _P	Pinch-Off Voltage	$V_{DS} = 2V I_{DS} = 10mA$	-0.25	-1.2	-2.0	V
I _{GSO}	Gate-Source Leakage Current	$V_{GS} = -5V$	- W.	15	125	μA
BV _{GS}	Gate-Source Breakdown Voltage	I _{GS} = 15mA	-12	-15		V
BV _{GD}	Gate-Drain Breakdown Voltage	I _{GD} = 15mA	-12	-16		V
Θ」	Thermal Resistivity			20		°C/W

Get Curtice Model 找了PDF 维车一下

Phone: (408) 988-1845

DSS-027 WG

BONDING PADS: 1.9 x 2.4 mils (50 x 60 µm typ.)

Filtronic

Solid State

ABSOLUTE MAXIMUM RATINGS (25°C) SYMBOL PARAMETER **RATING¹** V_{DS} **Drain-Source Voltage** 12V -5V V_{GS} Gate-Source Voltage IDS **Drain-Source Current** 2 x I_{DSS} Gate Current 120 mA I_{G} **RF Input Power** 1.2 W PIN Тсн **Channel Temperature** 175°C Storage Temperature T_{STG} -65/175°C 6.0W^{3,4} Pτ **Power Dissipation**

LP3000/LPV3000

2W Power PHEMT

RECOMMENDED CONTINUOUS OPERATING LIMITS						
SYMBOL	PARAMETER	RATING²				
V _{DS}	Drain-Source Voltage	8V				
V _{GS}	Gate-Source Voltage	-1V				
I _{DS}	Drain-Source Current	0.8 x I _{DSS}				
I _G	Gate Current	40 mA				
P _{IN}	RF Input Power	600 mW				
Т _{СН}	Channel Temperature	150°C				
T _{STG}	Storage Temperature	-20/50°C				
PT	Power Dissipation	5.0 W ^{3,4}				
G _{XdB}	Gain Compression	8 dB				

NOTES:

- 1. Operating conditions that exceed the Absolute Maximum Ratings could result in permanent damage to the device.
- 2. Recommended Continuous Operating Limits should be observed for reliable device operation.

3. Power Dissipation defined as: $P_T \equiv (P_{DC} + P_{IN}) - P_{OUT}$, where: $P_{DC} = DC$ bias power, $P_{OUT} = RF$ output power, and $P_{IN} = RF$ input power.

P_T(W) 4. Power Dissipation to be de-rated as follows: 5. Specifications subject to change without notice. 6.0 40 mW/°C Example #1: $V_{DS} = 8V, I_{DS} = 535 \text{ mA}$ 5.0 $P_{IN} = P_{OUT} = 0 \text{ dBm}$ (quiescent condition): $P_T = P_{DC} = 4.28W$ -40 mW/°C Max. continuous $T_{HS} = 25^{\circ}C$ Example #2: $V_{DS} = 8V, I_{DS} = 535 \text{ mA}$ $P_{IN} = 26.5 \text{ dBm} P_{OUT} = 33.5 \text{ dBm}$ $P_T = (4.28 + 0.45) - 2.24 = 2.49W$ Max. continuous $T_{HS} = 88^{\circ}C$ 25 150 175 T_{HS}(°C)

HANDLING PRECAUTIONS:

PHEMT chips should be stored in a dry nitrogen environment until assembly. Care should be exercised during handling to avoid damage to the devices. Proper Electrostatic Discharge (ESD) precautions should be observed at all stages of storage, handling, assembly, and testing. These devices should be treated as Class 1A (0-500V), and further information on ESD control measures can be found in MIL-STD-1686 and MIL-HDBK-263.

ASSEMBLY INSTRUCTIONS:

The recommended die attach is gold/tin eutectic solder under a nitrogen atmosphere. Stage temperature should be 280-290°C; maximum time at temperature is 1 min. The recommended wire bond method is thermo-compression wedge bonding with 0.7 or 1.0 mil (0.018 or 0.025 mm) gold wire. Stage temperature should be 250-260°C.

APPLICATIONS NOTES AND DESIGN DATA:

Applications Notes are available from your local FSS Sales Representative, or directly from the factory. Complete design data, including S-parameters, Noise data, and Large-Signal models, is available on 3.5" diskette, or may be down-loaded from our Web Page.

Get Curtice Model

DSS-027 WG