
PRELIMINARY DATA SHEET

LP6836SOT343

PACKAGED MEDIUM POWER PHEMT

FEATURES

- 0.5 dB Noise Figure at 2 GHz
- 19 dBm P-1dB 2 GHz, 19 dBm at 6 GHz
- 20 dB Power Gain at 2 GHz, 10 dB at 6 GHz
- 70% Power-Added-Efficiency

DESCRIPTION AND APPLICATIONS

The LP6836SOT343 is a packaged AlGaAs/InGaAs/AlGaAs pseudomorphic high electron mobility transistor (pHEMT) intended for applications requiring medium output power and/or high dynamic It utilizes a 0.25 µm x 360 µm Schottky barrier gate, defined by electron-beam range. photolithography. The LP6836's active areas are passivated with Si₃N₄, and the SOT343 (also known as SC-70) package is ideal for low-cost, high-performance applications that require a surfacemount package.

The LP6836SOT343 is designed for commercial systems for use in low noise amplifiers and oscillators operating over the RF and Microwave frequency ranges. The low noise figure makes it appropriate for use in receivers in MMDS and GPS. This device is also suitable as a driver stage for WLAN and ISM band spread spectrum applications.

ELECTRICAL SPECIFICATIONS @ T_{Ambient} = 25°C

Parameter	Symbol	Test Conditions	Min	Typ	Max	Units
Saturated Drain-Source Current	I_{DSS}	$V_{DS} = 2 V; V_{GS} = 0 V$	80		125	mA
Power at 1-dB Compression	P-1dB	$f=2GHz; V_{DS} = 3 V; I_{DS} = 50\% I_{DSS}$	18	19		dBm
Power Gain at 1-dB Compression	G-1dB	$f=2GHz; V_{DS} = 3 V; I_{DS} = 50\% I_{DSS}$	18	20		dB
Power-Added Efficiency	PAE	$f=2GHz; V_{DS} = 3 V; I_{DS} = 50\% I_{DSS};$ $P_{OUT} = 19.5 dBm$		70	五面	%
Noise Figure	NF	$f=2GHz; V_{DS} = 3V; I_{DS} = 25\% I_{DSS}$	D-T	0.5	C CO.	dB
		$f=2GHz; V_{DS} = 3V; I_{DS} = 50\% I_{DSS}$	W WILL	0.7		dB
Transconductance	G_{M}	$V_{DS} = 2 V; V_{GS} = 0 V$	75	100		mS
Gate-Source Leakage Current	I_{GSO}	$V_{GS} = -5 \text{ V}$		1	10	μΑ
Pinch-Off Voltage	$V_{\rm P}$	$V_{DS} = 2 \text{ V}; I_{DS} = 2 \text{ mA}$	-0.25		-2.0	V
Gate-Source Breakdown Voltage Magnitude	$ V_{BDGS} $	$I_{GS} = 2 \text{ mA}$	11	15		V
Gate-Drain Breakdown Voltage Magnitude	$ V_{BDGD} $	$I_{GD} = 2 \text{ mA}$	12	16		V

 $(108) 070_0050$

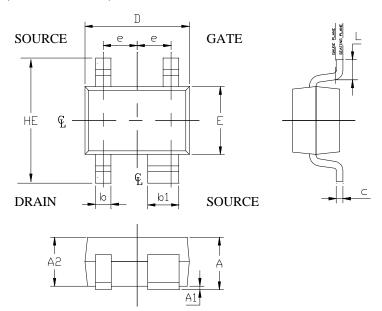
Revised: 1/20/01 Fmail·sales@files

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Test Conditions	Min	Max	Units
Drain-Source Voltage	V_{DS}	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		7	V
Gate-Source Voltage	V _{GS}	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		-3	V
Drain-Source Current	I_{DS}	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		I_{DSS}	mA
Gate Current	I_{G}	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		5	mA
RF Input Power	P _{IN}	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		60	mW
Channel Operating Temperature	T_{CH}	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		175	°C
Storage Temperature	T_{STG}	_	-65	175	°C

Notes: Even temporary operating conditions that exceed the Absolute Maximum Ratings could result in permanent damage to the device.

HANDLING PRECAUTIONS


To avoid damage to the devices care should be exercised during handling. Proper Electrostatic Discharge (ESD) precautions should be observed at all stages of storage, handling, assembly, and testing. These devices should be treated as Class 1A (0-500 V). Further information on ESD control measures can be found in MIL-STD-1686 and MIL-HDBK-263.

APPLICATIONS NOTES & DESIGN DATA

Applications Notes are available from your local Filtronic Sales Representative or directly from the factory. Complete design data, including S-parameters, noise data, and large-signal models are available on the Filtronic web site.

PACKAGE OUTLINE

(dimensions in mm)

SYMBOL	MIN	MAX	
Е	1.15	1.35	
D	1.85	2.25	
HE	1.80	2.40	
А	0.80	1.10	
A2	0.80	1.00	
A1	0.00	0.10	
е	0.65 BSC		
b	0.25	0.40	
b1	0.55	0.70	
С	0.10	0.18	
L	0.26	0.46	

All information and specifications are subject to change without notice.

 Phone: (408) 988-1845
 http:// www.filss.com
 Revised: 1/20/01

 Fax: (408) 970-9950
 Fmail: sales@filss.com