SHARP 查询LR38269供应商

捷多邦,专业PCB打样工厂,24小时加 LR38269

山货

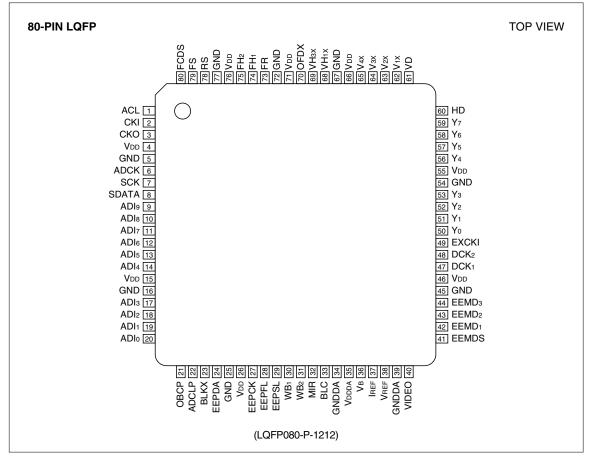
Color CCD Cameras

Digital Signal Processor for

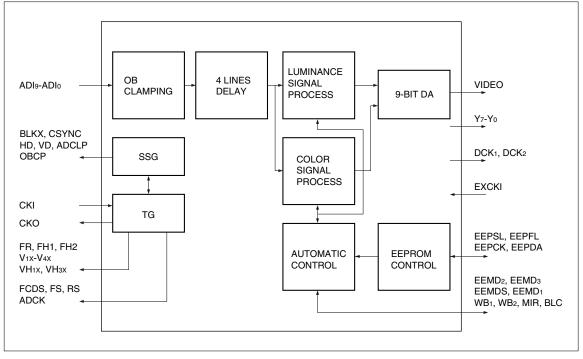
LR38269

DESCRIPTION

The LR38269 is a CMOS digital signal processor for color CCD camera system of 270 k/320 k-pixel CCD with complementary color filters. The camera system consists of CDS/AGC/ADC IC (IR3Y38M), DSP IC (LR38269), and V driver IC (LR36685) with CCD.


FEATURES

- Designed for 270 k/320 k color CCDs with Mg, G, Cy, and Ye complementary color filters
- Switchable between NTSC and PAL modes
- External control interface input/output
- Variable GAMMA and KNEE response (Select one out of 4 kinds of GAMMA & KNEE response)
- 10-bit digital input
- Analog NTSC/PAL composite output by built-in 9bit 1 ch DA converter
- Built-in mirror image function
- Built-in timing generator to drive CCD
- Built-in 2 k-bit EEPROM controller to set the camera adjustment data
- Built-in auto exposure control
- · Built-in auto white balance control
- · Built-in auto carrier balance control
- Single + 3.3 V power supply
- Package :


80-pin LQFP (LQFP080-P-1212) 0.5 mm pin-pitch

PIN CONNECTIONS

BLOCK DIAGRAM

PIN DESCRIPTION

PIN NO.	SYMBOL	I/O	POLARITY	DESCRIPTION			
1	ACL	IC		Initializing input.			
2	CKI	OSCI		Input for reference clock oscillation. Connect to CKO (pin 3) with R.			
3	СКО	OSCO		Output for reference clock oscillation. The output is the inverse of CKI (pin 2).			
4	Vdd	-		Supply of +3.3 V power.			
5	GND	-		A grounding pin.			
6	ADCK	OBF6M		Clock output of AD converter, connected to pin 13 of IR3Y38M.			
7	SCK	OBF4M		Clock output of serial data, connected to pin 16 of IR3Y38M.			
8	SDATA	OBF4M		Serial data output, connected to pin 19 of IR3Y38M.			
9	ADI9	IC		Digital signal input, fed from pin 12 of IR3Y38M (MSB).			
10	ADI8	IC		Digital signal input, fed from pin 11 of IR3Y38M.			
11	ADI7	IC		Digital signal input, fed from pin 10 of IR3Y38M.			
12	ADI6	IC		Digital signal input, fed from pin 9 of IR3Y38M.			
13	ADI5	IC		Digital signal input, fed from pin 8 of IR3Y38M.			
14	ADI4	IC		Digital signal input, fed from pin 5 of IR3Y38M.			
15	Vdd	-		Supply of +3.3 V power.			
16	GND	-		A grounding pin.			
17	ADI3	IC		Digital signal input, fed from pin 4 of IR3Y38M.			
18	ADI2	IC		Digital signal input, fed from pin 3 of IR3Y38M.			
19	ADI1	IC		Digital signal input, fed from pin 2 of IR3Y38M.			
20	ADIo	IC		Digital signal input, fed from pin 1 of IR3Y38M (LSB).			
21	OBCP	OBF4M	U	Optical clamp pulse output, connected to pin 32 of IR3Y38M.			
22	ADCLP	OBF4M	U	Clamp pulse output, connected to pin 45 of IR3Y38M.			
23	BLKX	OBF4M	U	Blanking pulse output, connected to pin 35 of IR3Y38M.			
24	EEPDA	IO4MU		Data input from EEPROM output pin.			
25	GND	-		Supply of +3.3 V power.			
26	Vdd	-		A grounding pin.			
27	EEPCK	IO4MU		Clock output to EEPROM clock input pin.			
21	EEFUR	1041010		This pin keeps high-impedance under high level of pin 29.			
28	EEPFL	IC		Control pin of EEPROM. Connect to the pull-up resistor.			
29	EEDOI	IC	~~	Control pin of EEPROM. A pull-down resistor should be connected between pin			
29	EEPSL	IC		29 and GND. High level of pin 29 can make data-setting from outside available.			
				White balance mode setting by both WB1 and WB2.			
20	WB1	10414		Pin 30 Pin 31 White balance mode			
30	VVB1	IO4M		0 0 AUTO			
				0 1 PRESET WB1			
				1 0 PRESET WB2			
				1 1 PRESET WB3			
31	WB2	IO4M		In digital output mode, pin 30 is assigned to bit 0 (LSB) of U/V signal and pin 31			
				is assigned to bit 1.			
L							

PIN NO.	SYMBOL	I/O	POLARITY	DESCRIPTION				
				Video output mode setting.				
32	MIR	IO4M		L : Normal H : Mirror				
				In digital output mode, this pin is assigned to bit 2 of U/V signal.				
				Backlight compensation selection.				
33	BLC	IO4M		L: OFF H: ON				
				In digital output mode, this pin is assigned to bit 3 of U/V signal.				
34	GNDDA	_		A grounding pin of built-in DA converter.				
35	Vddda	_		Supply of +3.3 V power of built-in DA converter.				
				Bias voltage output of built-in DA converter, connected to GND through a				
36	Vв	DAO		capacitor.				
37	IREF	DAO		Bias current output of built-in DA converter, connected to GND through a resistor.				
38	VREF	DAI		Bias voltage input of built-in DA converter, connected to +1.0 V power supply.				
39	GNDDA	_		A grounding pin of built-in DA converter.				
40	VIDEO	DAO		Analog video signal output.				
41	EEMDS	IO4MU		Electronic exposure mode setting by EEMDS, EEMD1, EEMD2 and EEMD3.				
42	EEMD1	IO4MU		See "Electronic Shutter Speed Setting" in AUTOMATIC CAMERA FUNCTION				
43	EEMD ₂	IO4MU		CONTROL.				
44	EEMD3	IO4MU		In digital output mode, 41 to 44 pins are assigned to bits 7 to 4 of U/V signals.				
45	GND	-		A grounding pin				
46	Vdd	_		Supply of +3.3 V power.				
47	DCK1	OBF4M		Clock output for digital signal output.				
47	DCKI			Output mode setting switches to CSYNC output.				
				ID pulse output for U/V output signal. In digital output, this pin outputs KEI-				
				PULSE.				
48	DCK2	OBF4M						
40	DUK2			NOTE : KEI-PULSE				
				At power-on, it keeps low. Both 1/60 s (PAL 1/50 s) as shutter speed and AGC gain				
				more than data of address 78h sets it high.				
				Bit 3 of address 03h sets the function of this pin.				
49	EXCKI	IC		1 : Clock input of 13.5 MHz for digital output				
				0 : VRI input for analog output				
50	Y0	OBF4M	\mathbf{X}	Bit 0 (LSB) of digital luminance signal output.				
51	Y1	OBF4M	\mathbf{X}	Bit 1 of digital luminance signal output.				
52	Y2	OBF4M	\mathbf{X}	Bit 2 of digital luminance signal output.				
53	Y3	OBF4M		Bit 3 of digital luminance signal output.				
54	GND	-		A grounding pin.				
55	Vdd	-		Supply of +3.3 V power.				
56	Y4	OBF4M		Bit 4 of digital luminance signal output.				
57	Y5	OBF4M		Bit 5 of digital luminance signal output.				
58	Y6	OBF4M		Bit 6 of digital luminance signal output.				

PIN NO.	SYMBOL	I/O	POLARITY	DESCRIPTION					
59	Y7	OBF4M	X	Bit 7 (MSB) of digital luminance signal output					
				Horizontal driving pulse output. Either CCD driving timing or BELL-PULSE is					
				selected by output mode setting.					
60	HD	OBF4M	Л						
				DTE : BELL-PULSE					
				Some period with high level every field.					
				Vertical driving pulse output.					
61	VD	OBF4M	Л	Either VD or CSYNC with either driving timing or video output timing is selected					
				by output mode setting.					
62	V1X	OBF4M	Л	Vertical driving pulse output, connected to pin 20 of LR36685.					
63	V2X	OBF4M	Л	Vertical driving pulse output, connected to pin 21 of LR36685.					
64	Vзх	OBF4M	Л	Vertical driving pulse output, connected to pin 18 of LR36685.					
65	V4X	OBF4M	Л	Vertical driving pulse output, connected to pin 14 of LR36685.					
66	Vdd	-		Supply of +3.3 V power.					
67	GND	_		A grounding pin.					
68	VH1X	OBF4M	<u> </u>	Vertical driving pulse output, connected to pin 19 of LR36685.					
69	VНзх	OBF4M	Л	Vertical driving pulse output, connected to pin 15 of LR36685.					
70	OFDX	OBF6M	<u> </u>	OFD driving pulse output, connected to pin 22 of LR36685.					
71	Vdd	_		Supply of +3.3 V power.					
72	GND	_		A grounding pin.					
73	FR	OBF12M	<u> </u>	Reset pulse output, connected to CCD through a capacitor.					
74	FH1	OBF12M		Horizontal driving pulse output, connected to CCD.					
75	FH2	OBF12M		Horizontal driving pulse output, connected to CCD.					
76	Vdd	_		Supply of +3.3 V power.					
77	GND	_		A grounding pin.					
78	RS	OBF6M	<u> </u>	Sample-hold pulse output, connected to pin 31 of IR3Y38M.					
79	FS	OBF6M	<u> </u>	Sample-hold pulse output, connected to pin 30 of IR3Y38M.					
80	FCDS	OBF6M	l l	Sample-hold pulse output, connected to both pin 28 and pin 29 of IR3Y38M.					
IC	: Input pir	n		IO4MU : Input/output pin with pull-up resistor					
	OBF4M : Output pin			OSCI : Input pin for oscillation					
	OBF6M : Output pin			OSCO : Output pin for oscillation					
OBF12M : Output pin				DAI : Input pin for DA converter					
IO4M : Input/output pin				DAO : Output pin for DA converter					

ADDRESS	NAME	BIT	CONTENTS						
00h			Not used						
01h		7	TV mode	0 : NTSC	1 : PAL				
		6	Input signal delay	0 : No delay	1:1 clock cycle delay				
		5	Clock polarity to latch input signal	0 : Normal	1 : Inverted				
		4	YL killer	0 : Normal	1 : Killed				
	MODE 1	3	Pin mode selection (NOTE 1)	0 : Mode input	1 : U/V output				
		2	VD output timing selection (NOTE 1)						
		1	HD output timing selection	0 : TG	1 : Video output				
		0	DCK1 output selection (NOTE 1)						
02h		7-6	Luminance gamma selection						
		5-4	Color gamma selection						
		3	Vertical aperture enhancement	0 : ON	1 : OFF				
	MODE 2	2	Horizontal aperture enhancement	0 : ON	1 : OFF				
		1	Color killer	0 : ON	1 : OFF				
		0	Flicker reduction	0 : ON	1 : OFF				
03h		7	Polarity selection of SP1 and SP2						
		6	Polarity inverter of HG						
		5	Video format selection	0 : Interlace	1 : Non-interlace				
		4	UV dot-sequence selection (output stage)						
	MODE 3	3	UV dot-sequence selection						
		2	Carrier balance tuning	0 : ON	1 : OFF				
		1	AGC	0 : Auto	1 : Fixed (gain at				
					address 1Bh)				
		0	Digital output clock	0 : 9.6 MHz	1 : Clock of EXCKI pin				
04h	REF_IRIS1	7-0	Exposure reference level (target of exposure	re control)					
05h	CTLD_01	7-0	Higher level of exposure reference level						
06h	CTLD_02	7-0	Lower level of exposure reference level						
07h	REF_IRIS2	7-0	Exposure reference level with backlight cor	npensation					
08h	UW_E1	7-0	Exposure control weighting factor 1						
09h	UW_E2	7-0	Exposure control weighting factor 2						
0Ah	UW_E3	7-0	Exposure control weighting factor 3						
0Bh	UW_E4	7-0	Exposure control weighting factor 4						
0Ch	UW_E5	7-0	Exposure control weighting factor 5						
0Dh	UW_E6	7-0	Exposure control weighting factor 6						
0Eh	UW_E7	7-0	Exposure control weighting factor 7						
0Fh	UW_E8	7-0	Exposure control weighting factor 8						
10h	CW_E	6-0	Weighting factor of exposure window area						
11h	CWP_E	6-0	Top-left point of exposure window area						
12h	CWA_E	6-0	Bottom-right point of exposure window area	a					

ADDRESS	NAME	BIT	CONTENTS				
13h	EE_DIV_STP	6-4	Electronic shutter speed pitch	000 : Slower	111 : Quicker		
		3-2	Exposure response speed selection with flic	ker reduction			
	LPFE_F		00 : Slower 01 : Normal	10 or 11 : Quicker			
		1-0	Exposure response speed selection				
	LPFE_N		00 : Slower 01 : Normal	10 or 11 : Quicker			
14h	P_HEE_IRIS	7-0	Maximum luminance level factor to control ex	posure			
15h	P_LEE_IRIS	7-0	Minimum luminance level factor to control ex	posure			
16h	INT_PEAK	6	Integrated pixels of peak signal	0 : 8 pixels	1:4 pixels		
		F	Condition of exposure control under locking-i	n number of images	to control exposure.		
		5		0 : 1 image	1 : Integrated 3 images		
	IRIS_DLY1	4	Valid image to control exposure	00 : Every image			
		3	01 : Every 2 images 10 : Every 4 images	11 : Every 8 imag	es		
		0	Condition of exposure control under free-runr	ning			
		2	Number of images	0 : 1 image	1 : Integrated 3 images		
	IRIS_DLY2	1	Valid image to control exposure	00 : Every image			
		0	01 : Every 2 images 10 : Every 4 images	11 : Every 8 imag	es		
17h	AG_DIV_STP	7-5	AGC control data	000 : Slower	111 : Quicker		
			Minimum pitch of AGC variable gain				
	AG_GAIN	4-0	DATA should be between 01h (finest pitch) a	ind 1Fh.			
18h			Not used				
19h	I_AGC_D8	7-0	AGC gain at power-on				
1Ah	REF_AGC_D8	7-0	AGC reference gain (more than data of 19h)				
1Bh	S_38M_GA	7-0	Fixed AGC gain				
1Ch	S_38M_MAX	2-0	AGC maximum gain				
1Dh	S_38M_OFS	6	Offset control	0 : Auto	1 : Fixed		
	3_30IVI_01 3	5-0	Offset data				
1Eh	CSEPR	7-0	Coefficient to extract red color signal				
1Fh	CSEPB	7-0	Coefficient to extract blue color signal				
20h	CB_R	7-0	Red signal carrier balance				
21h	CB_B	7-0	Blue signal carrier balance				
22h	K_T_R	7-0	Basic red WB gain				
23h	K_T_B	7-0	Basic blue WB gain				
24h	MAX_WBR	7-0	Red WB gain at maximum color temperature				
25h	MIN_WBR	7-0	Red WB gain at minimum color temperature				
26h	MAX_WBB	7-0	Blue WB gain at minimum color temperature				
27h	MIN_WBB	7-0	Blue WB gain red at maximum color tempera	ature			
28h	WBR1	7-0	Red WB data (preset 1)				
29h	WBB1	7-0	Blue WB data (preset 1)				
2Ah	WBR2	7-0	Red WB data (preset 2)				
2Bh	WBB2	7-0	Blue WB data (preset 2)				
2Ch	WBR3	7-0	Red WB data (preset 3)				

ADDRESS		BIT	CONTENTS						
2Dh	WBB3	7-0	Blue WB data (preset 3)						
2Eh	K_GA_R	7-0	Correction coefficient of R – Y gain	orrection coefficient of R – Y gain					
2Fh	K_GA_B	7-0	Correction coefficient of B - Y gain						
30h	REF_GA_R	5-0	Basic gain of R – Y signal						
31h	REF_GA_B	5-0	Basic gain of B – Y signal						
32h	GA_R1	5-0	R – Y gain data (preset 1)						
33h	GA_B1	5-0	B – Y gain data (preset 1)						
34h	GA_R2	5-0	R – Y gain data (preset 2)						
35h	GA_B2	5-0	B – Y gain data (preset 2)						
36h	GA_R3	5-0	R – Y gain data (preset 3)						
37h	GA_B3	5-0	B – Y gain data (preset 3)						
38h	MAX_IQAREA	7	AWB IQ area selection 0 : Set data	1 : Widest					
			6-5	Response speed selection with flicker reduction					
	LPFIQ_F		00 : Slower 01 : Normal 10 or 11 : Quic	ker					
	LPFIQ_N	4-3	Response speed						
	FINE	2	Fine-tuning mode of auto white balance						
	AWB_WAIT_C	1-0	AWB time constant after lock-in (upper 2 bits)						
39h	AWB_WAIT_C	7-0	AWB time constant after lock-in (lower 8 bits)						
3Ah	CMP_CT	7-0	Valid data to control AWB (01h makes all AWB data valid.)						
3Bh	AWB_HCL	7-0	Highest luminance level to be available for AWB control						
3Ch	AWB_LCL	7-0	Lowest luminance level to be available for AWB control						
3Dh	REF_WBPK	7-0	Offset luminance level to control data of 3Bh and 3Ch						
3Eh	K_CL	7-0	Maximum luminance level factor to control data of 3Bh and	3Ch					
3Fh	K_WBCL	7-0	Weighting factor for data of 3Dh and 3Eh						
40h	UW_IQ1	7-0	AWB control weighting factor 1						
41h	UW_IQ2	7-0	AWB control weighting factor 2						
42h	UW_IQ3	7-0	AWB control weighting factor 3						
43h	UW_IQ4	7-0	AWB control weighting factor 4						
44h	INT_I_R – Y	7	AWB control data 0 : I/Q	1 : R – Y/B – Y					
	CW_IQ	6-0	Weighting factor of AWB window area						
45h		7-4	Top-left point of AWB window area						
	CWPA_IQ	3-0	Bottom-right point of AWB window area						
46h	CTLD_AW0	7-0	Exposure level to erase the area to detect white color						

ADDRESS	NAME	BIT	CONTENTS				
47h	AWB_IP_L	7-0	First AWB detector area I-PLUS	NOTE :			
48h	AWB_IM_L	7-0	First AWB detector area I-MINUS	Data to set first area should be larger than			
49h	AWB_QP_L	7-0	irst AWB detector area Q-PLUS data to set second area.				
4Ah	AWB_QM_L	7-0	First AWB detector area Q-MINUS				
4Bh	AWB_IP_S	7-0	Second AWB detector area I-PLUS	Second area should be closer to the cross			
4Ch	AWB_IM_S	7-0	Second AWB detector area I-MINUS	point of I-axis and Q-axis, compared to first			
4Dh	AWB_QP_S	7-0	Second AWB detector area Q-PLUS	area.			
4Eh	AWB_QM_S	7-0	Second AWB detector area Q-MINUS				
4Fh	AWB_I_WH_L	6-0	First AWB white zone I-PLUS				
50h	AWB_Q_WH_L	6-0	First AWB white zone Q-PLUS				
51h	AWB_I_WH_S	6-0	Second AWB white zone I-MINUS				
52h	AWB_Q_WH_S	6-0	Second AWB white zone Q-MINUS				
53h	K_MAT_R	7-0	R - Y gain factor for color matrix correction	bn			
54h	K_MAT_B	7-0	B – Y gain factor for color matrix correction	n			
55h	REF_MAT_R	5-0	Basic R – Y data of color matrix correction	n			
56h	REF_MAT_B	5-0	Basic B - Y data of color matrix correction	n			
57h	MAT1	7-0	Color matrix data (preset 1) R - Y 4 bits,	B – Y 4 bits			
58h	MAT2	7-0	Color matrix data (preset 2) R - Y 4 bits,	B – Y 4 bits			
59h	MAT3	7-0	Color matrix data (preset 3) R - Y 4 bits,	B – Y 4 bits			
5Ah	COL_S	7-0	AGC gain to start suppressing color signal	I			
5Bh	COL_H	5-0	Pitch of color signal suppressing by addre	ss 5Ah			
5Ch	CKI_HCL	7-0	Higher luminance level to start suppressing	g color signal			
5Dh	CKI_LCL	7-0	Lower luminance level to start suppressing	g color signal			
5Eh		7-4	Color signal suppression gain for higher lu	iminance signal			
	CKI_HLGA	3-0	Color signal suppression gain for lower lur	ninance signal			
5Fh		7-4	Highlight luminance signal position to supp	press color -2 to +2			
	CKI_HLTI	3-0	Lowest luminance signal position to suppress color -2 to +2				
60h	CKI_HECL	7-0	Horizontal aperture level to start suppressi	ing color signal			
61h	CKI_EVCL	7-0	Vertical aperture level to start suppressing	color signal			
62h		7-4	Horizontal aperture gain to suppress color	signal by address 60h			
	CKI_EGA	3-0	Vertical aperture gain to suppress color sig	gnal by address 61h			
63h	APT_S	7-0	AGC gain to start suppressing aperture sig	gnal			
64h	APT_H	5-0	Gain to suppress aperture signal by addre	ess 63h			
65h	NSUP_R	7-0	R – Y signal coring level				
66h	NSUP_B	7-0	B – Y signal coring level				
67h	CKI_IEL	7	Color-killer level	0 : Unity gain 1 : 1/4 gain			
		6-4	Horizontal edge signal position to kill color	signal -2 to +2			
	CKI_ETI	3-1	Vertical edge signal position to kill color signal	gnal -2 to +2			
68h	APT_HTIM	7-6	Horizontal aperture signal position -1 to +1				
	APT_HGA	5-1	Horizontal aperture gain				

ADDRESS	NAME	BIT	CON	TENTS					
69h	APT_HCL	6-0	Horizontal aperture signal coring	orizontal aperture signal coring					
6Ah	APT_VGA	4-0	Vertical aperture gain	rtical aperture gain					
6Bh	APT_VCL	6-0	Vertical aperture signal coring						
6Ch	CBLK_LV	7	CBLK level selection	0 : 00h	1 : 10h				
	SETUP	6-1	Set up level						
6Dh	VARI_Y	4-0	luminance signal position						
6Eh	SW_CTRL	7-0	The following setting is available under bo WB1 (LSB), WB2, BACK, EEMDS, EEMD		5 1				
6Fh	7-5 ADCK phase setting (6 steps per 60°)								
	TG_SEL1	4-2	S phase setting (±2 ns x 3)						
70h		7-5	FCDS phase setting (±2 ns x 3)						
	TG_SEL2	4-2	FR phase setting (±2 ns x 3)						
71h	ENC_MUTE	7	Encoder muting	0 : OFF	1 : ON				
	SYNC_SW	6	SYNC adder	0 : ON	1 : OFF				
	SEL_RB	5	Serial digital data setting						
	OUT_GAIN	4-0	Gain of video output amplifier						
72h	SYNC_LEV	7-0	SYNC level (80h = 40 IRE)						
73h	BAS_R	7-0	BURST level of R – Y						
74h	BAS_B	7-0	BURST level of B – Y						
75h		7	Muting at power-on						
	MUTE_OUT	6-0	Muting period (data multiplied by 1 field p	eriod)					
76h	TEST	2-0	Test data (EEPROM data must be 00h)						
77h	VRI	2	EXCKI pin function	1 : VRI function	0 : Clock input				
	TEST	1	Test data (EEPROM data must be 0)						
	TEST	0	Test data (EEPROM data must be 0)						
78h	KEI_AGC	8	AGC gain to set KEI-PULSE high						

(NOTE 1)

	ADDRESS		SIGNAL OUTPUT			
	01					
Bit 3	Bit 2	Bit 0	DCK1 (Pin 47)	VD (Pin 61)	HD (Pin 60)	
DIGITAL	1	0	DCK1	VD for video out	HD	
1	0	0	DCK1	VD for CCD driving	HD	
	х	1	DCK1	CSYNC	HD	
ANALOG	1	0	CSYNC	VD for video out	HD	
0	0	0	CSYNC	VD for CCD driving	HD	
	1	1	CSYNC	VD for video out	BELL	
	0	1	CSYNC	VD for CCD driving	BELL	

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT
Power supply voltage	Vdd	-0.3 to +4.3	V
Input voltage	Vi	-0.3 to VDD + 0.3	V
Output voltage	Vo	-0.3 to VDD + 0.3	V
Storage temperature	Tstg	-55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

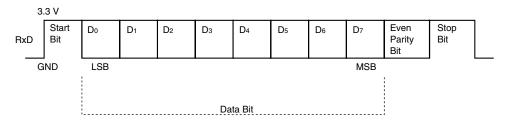
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Power supply voltage	Vdd	3.0	3.3	3.6	V
Operating temperature	TOPR	-20	+25	+70	°C
Input clock frequency	fск		28.6		MHz

ELECTRICAL CHARACTERISTICS

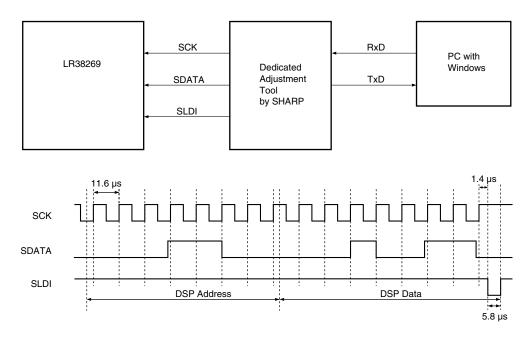
(VDD = 3.0 to 3.6 V, TOPR = -20 to +70 °C)

						170 0)	
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Input "Low" voltage	VIL				0.2 Vdd	V	4
Input "High" voltage	Viн		0.8 Vdd			V	
Input "Low" current	IIL1	VIN = 0 V		100		μA	2
Output "Low" voltage	VOL1	IOL = 4 mA			0.2 Vdd	V	3
Output "High" voltage	VOH1	Iон = -4 mA	0.8 Vdd			V	3
Output "Low" voltage	VOL2	IOL = 6 mA			0.2 Vdd	V	4
Output "High" voltage	Voh2	Іон = -6 mA	0.8 Vdd			V	4
Output "Low" voltage	VOL3	IOL = 12 mA			0.2 Vdd	V	5
Output "High" voltage	Vонз	Iон = -12 mA	0.8 Vdd			V	5
Output "Low" voltage	VOL4	IoL = 3 mA			0.2 Vdd	V	6
Output "High" voltage	VOH4	Іон = -2 mA	0.8 Vdd			V	0
Resolution	RES			9		bit	
Linearity error	EL	VREF = 1.0 V			±3.0	LSB	7
Differential error	ED	Rref= 4.8 kΩ			±1.0	LSB	/
Full scale current	IFS	Rout = 75 Ω		13		mA	
Reference voltage	VREF			1.0		V	8
Reference resistance	RREF			4.8		kΩ	9
Output load resistance	Rout			75		Ω	7

NOTES :


- 1. Applied to inputs (IC, IO4M, IO4MU).
- 2. Applied to input (IO4MU).
- 3. Applied to outputs (OBF4M, IO4M, IO4MU).
- 4. Applied to output (OBF6M).
- 5. Applied to output (OBF12M).

- 6. Applied to output (OSCO).
- 7. Applied to output (VIDEO).
- 8. Applied to input (VREF).
- 9. Applied to output (IREF).


Data Interface

(1) Format of data transfers

- Format of transfers : Asynchronous (Based on RS-232C standard)
- Bit rate : 9 600 bps
- Data length : 8 bits
- Parity check : 1 even parity bit
- Start bit : 1 bit
- Stop bit : 1 bit
- Signal voltage level (CMOS)

· System configuration

AUTOMATIC CAMERA FUNCTION CONTROL

Automatic Electronic Exposure Control

Electronic shutter speed is controlled so that the exposure control data approach to the data of address 04h.

Under BLC mode, the data of address 07h is available instead of address 04h.

After the exposure control data is less than the data of address 05h, an electronic shutter speed is hold. And then AGC gain is controlled so that the exposure control data will be less than the data of address 06h.

In the case of coming more than the data of address 07h, exposure control starts again.

Electronic Shutter Speed Setting

By either hardware or coefficient data, electronic shutter speed below is selectable.

EEMDS	EEMD1	EEMD ₂	EEMD3	ELECTRONIC SHUTTER SPEED		
				NTSC	PAL	
0	0	0	0	1/60 s	1/50 s	
0	0	0	1	1/100 s	1/120 s	
0	0	1	0	1/250 s	1/250 s	
0	0	1	1	1/500 s	1/500 s	
0	1	0	0	1/1 000 s	1/1 000 s	
0	1	0	1	1/2 000 s	1/2 000 s	
0	1	1	0	1/5 000 s	1/5 000 s	
0	1	1	1	1/10 000 s	1/10 000 s	
1	0	0	0	1/20 000 s	1/20 000 s	
1	0	0	1	1/50 000 s	1/50 000 s	
1	0	1	0	1/100 000 s	1/100 000 s	
1	0	1	1	1/30 s	1/25 s	
1	1	0	0	1/15 s	1/12.5 s	
1	1	0	1	1/7.5 s	1/6.25 s	
1 1	4	1	0	AUTO	AUTO	
	I	1	1 0	1/60 to 1/100 000 s	1/50 to 1/100 000 s	
4		1 1	1	AUTO	AUTO	
1	1			1/60 to 1/100 000 s	1/50 to 1/100 000 s	

Slower shutter speed less than 1/60 s (1/50 s of PAL) can make images whose interval is every two fields, every four fields, etc..

VD pulse is also converted to the same frequency as the output image rate.

Electronic exposure control data comes from below equation using averaged luminance levels of 64 areas in one image, made by DSP.

Electronic exposure control data =

- [{Weighted data 1 ① x (64 address 10h)
- + weighted data 2 2 x address 10h} ÷ 64

x (256 - address 14h - address 15h)

- + top level ③ x address 14h
- + bottom level ④ x address 15h] ÷ 256

Y11	Y12	Y 13	Y14	Y15	Y16	Y17	Y18
Y21	Y22	Y23	Y24	Y25	Y26	Y27	Y28
Y31	Y32	Y33	Y34	Y35	Y36	Y37	Y38
Y41	Y42	Y43	Y44	Y45	Y46	Y47	Y48
Y51	Y52	Y53	Y54	Y55	Y56	Y57	Y58
Y61	Y62	Y63	Y64	Y65	Y66	Y67	Y68
Y71	Y72	Y73	Y74	Y75	Y76	Y77	Y78
Y81	Y82	Y83	Y84	Y85	Y86	Y87	Y88

1 Weighted data 1

This comes from the following equation weighting in horizontal.

Weighting factors are the data from address 08h to address 0Fh.

{(Y11 + Y12 ··· + Y18) ÷ 8 x address 08h + (Y21 + Y22 ··· + Y28) ÷ 8 x address 09h

+ (Y₈₁ + Y₈₂ ··· + Y₈₈) ÷ 8 x address 0Fh} ÷ 256 = Weighted data 1

The sum from address 08h to address 0Fh shall be 256.

2 Weighted data 2

Weighting area can be set by the data of address 11h and address 12h. (see "NOTES" in Gamma Characteristic Option)

This comes from the following equation weighting in selected areas.

(Y₃₃ + Y₃₄ ··· + Y₆₆)/number of areas to be selected = Weighted data 2

- ③ Top level : The highest luminance data in one image by averaging either 4 pixels or 8 pixels in horizontal.
- ④ Bottom level : The lowest luminance data in one image by averaging either 4 pixels or 8 pixels in horizontal.

Auto White Balance Control

White balance control data less than the data of address 51h and address 52h stops AWB.

White balance control data less than the data of address 4Fh and address 50h makes AWB active so that white balance control data is less than the data of address 51h and address 52h.

In the case of larger than the data of address 4Fh and address 50h, AWB will be active again.

White balance data comes from the following equation using averaged I and Q data of 16 areas in one image.

l11	l12	l13	I 14
I 21	I 22	I 23	I 24
I 31	I 32	133	I 34
I 41	42	I 43	44

Q11	Q11 Q12		Q14
Q21	Q22	Q23	Q 24
Q31	Q32	Q33	Q 34
Q41	Q42	Q43	Q44

White balance data =

{Weighted data $3 (1) \times (64 - \text{address 44h})$ + weighted data $4 (2) \times \text{address 44h} \div 64$

1 Weighted data 3

I (or Q) data comes from the following equation using the weighting data from address 40h to address 43h.

{(l11 + l12 ··· + l14) ÷ 4 x address 40h + (l21 + l22 ··· + l24) ÷ 4 x address 41h : + (l41 + l42 ··· + l44) ÷ 4 x address 43h} ÷ 256 = Weighted data 3

The sum from the data of address 40h to the data of address 43h shall be 256.

2 Weighted data 4

Weighting area can be selected by address 45h. (see "NOTES" in Gamma Characteristic Option.) Weighted data comes from averaged data in selected area.

③ White balance area setting

The sum of I and Q can be regulated by the luminance level and the color level.

Setting target zone : address 47h to address 4Ah White balance data less than the data of address 51h and address 52h changes the target zone of auto white balance to the zone by the data from address 4Bh to 4Eh.

Above regulation comes from the following equation along the luminance level.

Setting available luminance level range : Highest luminance level limiter = address 3Bh + [{address 3Eh x H peak level + (256 - address 3Eh) x exposure control data} ÷ 256 - address 3Dh] x address 3Fh

Lowest luminance level limiter = address 3Ch + [{address 3Eh x H peak level + (256 - address 3Eh) x exposure control data} ÷ 256 - address 3Dh] x address 3Fh

Auto Color Matrix Compensation

Color matrix compensation can be done by $R - Y = R - Y \pm (Data \ 1 \times B - Y)$ $B - Y = B - Y \pm (Data \ 2 \times R - Y)$

Above data comes from below equation along the variation of color temperature.

Data 2 =

address 55h + {(working R white balance data – address 25h + (address 26h – working B white balance data)} ÷ 32 x address 53h ÷ 8

Data 2 =

address 56h + {(working R white balance data – address 25h) + (address 26h – working B white balance data)} ÷ 32 x address 54h ÷ 8

Auto Color Level Compensation

Color level can be auto-controlled by the following equation along the variation of color temperature.

B – Y level =

address 30h + {(working R white balance data – address 25h) x address 22h + (address 26h – working B white balance data) x address 23h} \div 32 x address 2Eh \div 8

R - Y level =

address 31h + {(working R white balance data – address 25h) x address 22h + (address 26h – working B white balance data) x address 23h} \div 32 x address 2Fh \div 8

Color Level Suppression Under Lower Illuminance

Working AGC gain can control both R - Y level and B - Y level by the following equation.

 $\begin{array}{l} \mathsf{R}-\mathsf{Y} \ \mathsf{level} = \\ \mathsf{address} \ \mathsf{31h} \ \mathsf{x} \ \{\mathsf{16}-\mathsf{(working} \ \mathsf{AGC} \ \mathsf{gain}-\mathsf{address} \\ \mathsf{5Ah} \ \mathsf{x} \ \mathsf{address} \ \mathsf{5Bh} \ \div \ \mathsf{16} \\ \mathsf{B}-\mathsf{Y} \ \mathsf{level} = \\ \mathsf{address} \ \mathsf{30h} \ \mathsf{x} \ \{\mathsf{16}-\mathsf{(working} \ \mathsf{AGC} \ \mathsf{gain}-\mathsf{address} \\ \mathsf{5Ah} \ \mathsf{x} \ \mathsf{address} \ \mathsf{5Bh} \ \div \ \mathsf{16} \\ \end{array}$

 $\{16 - (working AGC gain - address 5Ah) x address 5Bh ÷ 16\} \le 16$

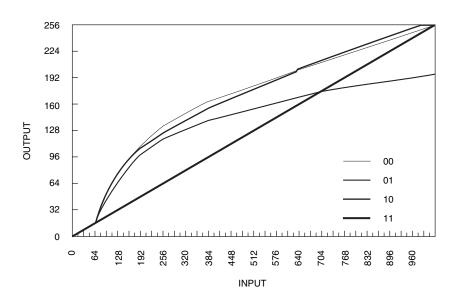
When (working AGC gain – address 5Ah) \leq 0, () = 0.

Aperture Level Suppression Under Illuminance

Working AGC gain can control both the horizontal aperture level and the vertical aperture level by the following equation.

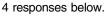
Horizontal aperture level = address 68h x {16 - (working AGC gain - address 63h) x address 64h \div 16} \div 16

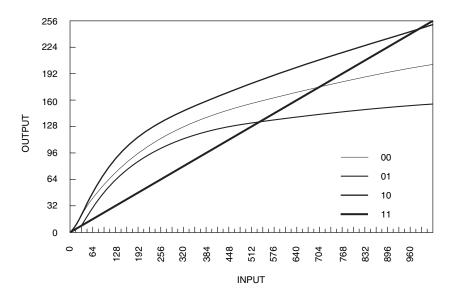
Vertical aperture level = address 6Ah x {16 - (working AGC gain - address 63h) x address 64h ÷ 16} ÷ 16


 $\{16 - (working AGC gain - address 63h) x address 64h \div 16\} \le 16$

When (working AGC gain – address 63h) \leq 0, () = 0.

(1) Luminance Signal Gamma Option


Bit 7 and bit 6 of address 02h can select one out of


4 responses below.

(2) Color Signal Gamma Option

Bit 5 and bit 4 of address 02h can select one out of

NOTES :

• Weighting position of auto electronic exposure control (address 11h)

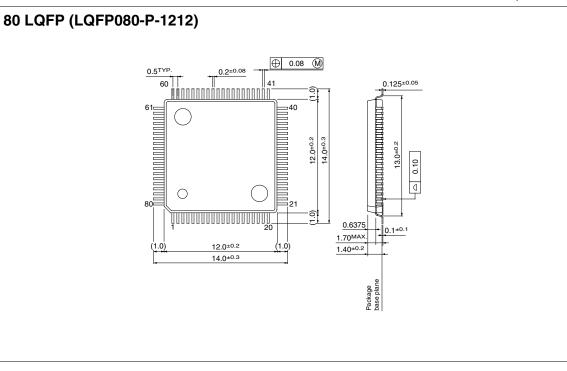
00h	08h	•	30h	38h
01h	09h	•	31h	39h
•	•	•	•	•
06h	0Eh	•	36h	3Eh
07h	0Fh	•	37h	3Fh

• Weighting area of auto electronic exposure control (address 12h)

00h	08h	•	30h	38h
01h	09h	•	31h	39h
•	•	•	•	•
06h	0Eh	•	36h	3Eh
07h	0Fh	•	37h	3Fh

• Weighting position of auto white balance control (address 45h)

00h	00h 04h		0Ch
01h	05h	09h	0Dh
02h	06h	0Ah	0Eh
03h	07h	0Bh	0Fh


• Weighting area of auto white balance control (address 45h)

00h	00h 04h		0Ch
01h	05h	09h	0Dh
02h	06h	0Ah	0Eh
03h	07h	0Bh	0Fh

PACKAGES FOR CCD AND CMOS DEVICES

PACKAGE

(Unit : mm)

