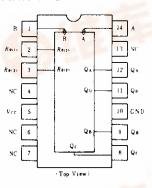

The HD74LS93 contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and threestate binary counter for divide-by-eight. To use this maximum count length of this counter, the B input is connected to the Q_A output. The input count pulses are applied to input A and the outputs are described in the appropriate function table.

■BLOCK DIAGRAM

■RECOMMENDED OPERATING CONDITIONS


Iter	n	Symbol	min	typ	max	Unit
Count A input			0		32	MIL
frequency	B input	frount	0	_	16	MHz
Pulse width	A input	tw:	15			
	B input		30	-		ns
	Reset inputs		15		_	
Setup time		ts u	25			ns

TIMING DEFINITION

102

■PIN ARRANGEMENT

■ABSOLUTE MAXIMUM RATINGS

	Item Supply voltage		Ratings	Unit
Supply vo			7.0	V
Input	R Inputs	.,	7.0	V
voltage	A, B Inputs	Vin	5.5	v
Operating tem	Operating temperature range		-20-+75	°C
Storage tem	perature range	Term	65 + 150	°C

FUNCTION TABLE

■ Reset/Count Function Table

Reset	Inputs	Outputs				
R0co	R0(2)	Qυ	Qc	Qв	QA	
Н	Н	L	L	L	L	
L	×		Co	unt		
×	ī		Co	unt		

BCD Count Sequence (Notes 1)

<i>c</i> .		Out	puts	
Count.	Qn	\mathbf{Q}_C	Qв	Q_A
0	L	L	L	L
1	L	L	L	Н
2	L	L	Н	I.
3	L	L	Н	Н
4	L	Н	L	L
5	L	Н	L	Н
6	L	Н	H	L
7	L	Н	Н	H
8	Н	L	L	L
9	Н	L	L	Н
10	Н	L	Н	L
11	Н	L	Н	Н
12	Н	Н —	Ł	L
13	Н	Н	L	Н
14	Н	Н	Н	L
15	H	Н	Н	н

Notes) 1. Output $Q_{\mathbf{A}}$ is connected to input B for BCD count.

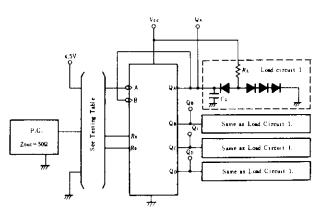
2. H; high level, L; low level, X; irrelevant

ELECTRICAL CHARACTERISTICS ($Ta = -20 \sim +75^{\circ}C$)

Iter	n	Symbol	Test Conditions		min	typ*	max	Unit
Input voltage		Vin			2.0	_		v
		VIL					0.8	V
		Voн	Vcc=4.75V, VIH=2V, VIL=0.8	I, Iон = −400µA	2.7	_		V
Output voltage			$V_{CC}=4.75V$, $V_{IH}=2V$,	IoL = 4mA**		_	0.4	v
		Vol	$V_{IL}=0.8V$ $IoL=8mA^{**}$		_		0.5	v
A	Any Reset				-	-	-0.4	
	A input	In.	$V_{CC} = 5.25 \text{V}, V_I = 0.4 \text{V}$		_	_	-2.4	mA
	B input					_	-1.6	
	Any Reset						20	
Input current	A input	Iн	$V_{CC} = 5.25 \text{V}, V_{I} = 2.7 \text{V}$		-	_	40	μA
	B input				_	-	40	
	Any Reset			$V_I = 7 \text{ V}$	-	-	0.1	mA
	A input	Iı	$V_{CC}=5.25V$	$V_I = 5.5 \text{V}$	-	_	0.2	
	B input			$V_I = 5.5 \text{V}$	_	_	0.2	
Short-circuit output current		Ios	Vcc=5.25V		- 20	_	-100	mA
Supply current		Icc***	Vcc = 5.25V		_	9	15	mА
Input clamp voltage		Vik	$V_{CC} = 4.75 \text{V}, I_{IN} = -18 \text{mA}$		-	-	-1.5	V

ESWITCHING CHARACTERISTICS ($V_{CC} = 5V$, $T_a = 25^{\circ}C$)

Item	Symbol	Inputs	Outputs	Test Conditions	min	typ	max	Unit
		A	QA		32	42	-	MHz
Maximum count frequency	fmax	В	Qв		16		-	
	tplH	Α	QA		_	10	16	ns
	tphi.			$C_L = 15 \text{pF}, R_L = 2 \text{k}\Omega$	_	12	18	
	tPLH	- A	Qυ		_	46	70	ns
	tphl				_	46	70	
	tPLH	В	Qв			10	16	ns
Propagation delay time	tphi.				_	14	21	
	tplh	В	Qc		_	21	32	ns
	tphl					23	35	
	tplh				_	34	51	
	tphl	В	Q□			34	51	ns
	tphl	Set-to-0	$Q_A \sim Q_D$		_	26	40	ns


 ^{*} V_{CC}=5V, Ta=25°C
 ** Q_A output is tested at specified I_{OL} plus the limit value of I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability.

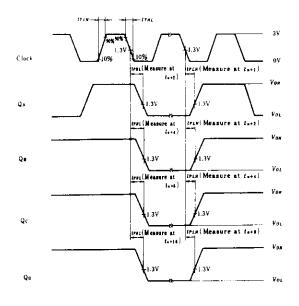
^{***} I_{CC} is measured with all outputs open, both $R_{\rm o}$ inputs grounded following momentary connection to 4.5V, and all other inputs grounded.

HD74LS93

TESTING METHOD

1) Test Circuit

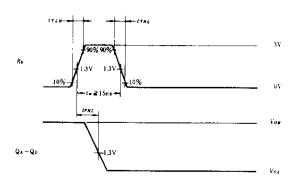
Notes) 1. C_L includes probe and jig capacitance.


2. All diodes are 1S2074 (H).

2) Testing Table

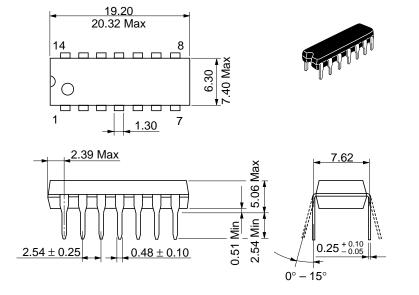
1.	From input	From input Inputs			Outputs				
ltem	to output	Α	В	R₀	QA	Qв	Qc	Qo	
/max	A →Q	IN	to QA	GND	Out	Out	Out	Qut	
	B →Q	4.5V	IN	GND	;	Out	Out	Out	
-	A →Q _A	IN	to Qa	GND	Out	<u> </u>	_	_	
	A →QĐ	IN	to QA	GND	_	-		Out	
ıP LH	B →Q _B	4.5V	IN	GND		Out			
IPHL	B →Qc	4.5V	IN	GND	-		Out	_	
	$B \rightarrow Q_D$	4.5V	IN	GND		-	_	Out	
	R∜≛∙Q	IN*	to QA	IN	Out	Out	Out	Out	

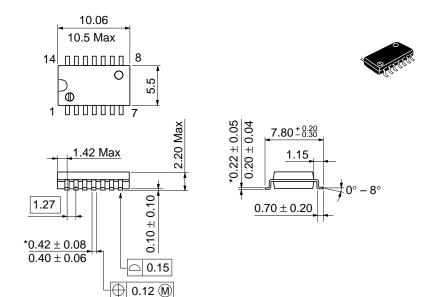
^{*} For initialized.


Waveform-1 fmax, tPLH, tPHL, (Clock→Q)

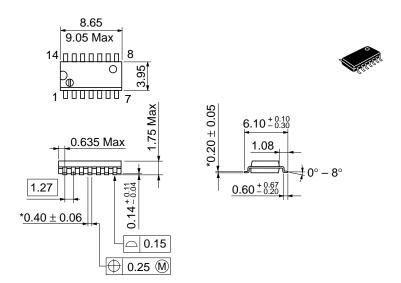
Notes) 1. Input pulse; $t_{TLH} \le 15$ ns, $t_{THL} \le 5$ ns, PRR = 1MHz, duty cycle=50% and: for f_{max} , $t_{TLH} = t_{THL} \le 2.5$ ns.

2. t_n is reference bit time when all outputs are low.


Waveform-2 tPHI.(Ro→Q)


Notes) 1. $t_{TLH} \le 15$ ns, $t_{THL} \le 5$ ns.

^{**} Measured with each input and unused inputs at 4.5V.



Unit: mm

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor

HITACH

Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

URL NorthAmerica http:semiconductor.hitachi.com/ Europe http://www.hitachi-eu.com/hel/ecg

Asia (Singapore) http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (Taiwan) Asia (HongKóng) http://www.hitachi.com.hk/eng/bo/grp3/index.htm

Japan http://www.hitachi.co.jp/Sicd/indx.htm

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose, CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany

Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00

Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road

Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia I td Taipei Branch Office

3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsu Kowloon, Hong Kong

Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.