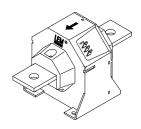


Current Transducer LT 505-T

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).



Electrical data Α Primary nominal r.m.s. current 500 I_{PN} Primary current, measuring range 0 .. ± 1200 \dot{R}_{M} Measuring resistance @ $T_{a} = 70^{\circ}C$ $\mathbf{T}_{A} = 85^{\circ}\mathrm{C}$ @ ± 500 A_{max} with ± 15 V 65 60 Ω @ ± 800 A_{max} Ω 0 15 0 12 @ ± 500 A_{max} 140 0 145 15 Ω with ± 24 V @ ± 1200 A_{max} 22 15 18 Ω Secondary nominal r.m.s. current 100 mΑ Conversion ratio 1:5000 Supply voltage (± 5 %) ± 15 .. 24 Current consumption $30 (@ \pm 24 V) + I_s mA$ R.m.s. voltage for AC isolation test, 50 Hz, 1 mn 6 kV R.m.s. rated voltage 1), safe separation 1750 basic isolation 3500 ٧

Accuracy - Dynamic performance data							
X _G	Overall accuracy @ I_{PN} , $T_A = 25^{\circ}C$ Linearity		± 0.6 < 0.1		% %		
I _о I _{от}	Offset current @ $\mathbf{I}_{p} = 0$, $\mathbf{T}_{A} = 25^{\circ}\text{C}$ Thermal drift of \mathbf{I}_{O}	- 10°C + 85°C	Typ ± 0.3	Max ± 0.4 ± 0.5	mA mA		
t _, di/dt f	Response time ²⁾ @ 90 % of I _{P max} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC ·	150	μs Α/μs kHz		

General data							
T _A	Ambient operating temperature		- 10 + 85	°C			
T _s	Ambient storage temperature		- 25 + 100	°C			
$\mathbf{R}_{\mathrm{s}}^{\mathrm{r}}$	Secondary coil resistance @	$T_A = 70^{\circ}C$	65	Ω			
Ü		$T_A = 85^{\circ}C$	69	Ω			
m	Mass		850	g			
	Standards 3)		EN 50178				

$I_{PN} = 500 A$

Features

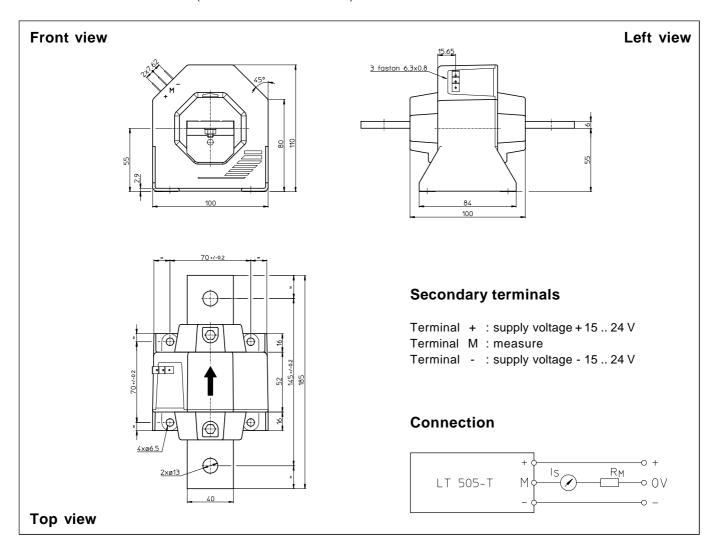
- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.


Notes: 1) Pollution class 2. With a non insulated primary bar which fills the through-hole

- ²⁾ With a di/dt of 100 A/µs
- ³⁾ A list of corresponding tests is available

980716/2

Dimensions LT 505-T (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary
- Connection of secondary
- ± 0.5 mm
- 4 holes \varnothing 6.5 mm or by the primary bar
- 2 holes \varnothing 13 mm
- Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.