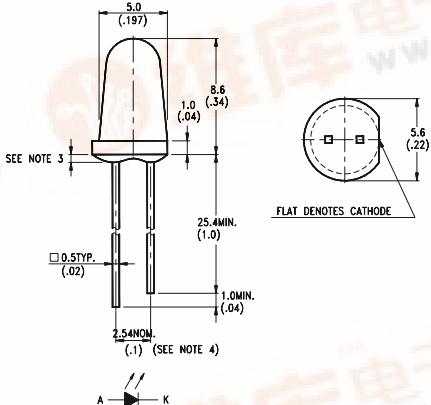


查询LTE-2871供应商

LITEON

捷多邦 专业PCB打样工厂, 24小时加急
GaAlAs T-1 3/4 Modified 5 φ 出货
Infrared Emitting Diode
LTE-2871/LTE-2871C


Features

- Selected to specific on-line intensity and radiant intensity ranges.
- Low cost plastic end looking package.
- T-1 3/4 modified package.
- The LTE-2871 series are made with Gallium Aluminum Arsenide window layer on Gallium Arsenide infrared emitting diodes.

Description

The LTE-2871 series are high intensity Gallium Aluminum Arsenide infrared emitting diodes mounted in clear plastic end looking packages. The LTE-2871 series provides a broad range of intensity selection. Suffix C-smoke color lens.

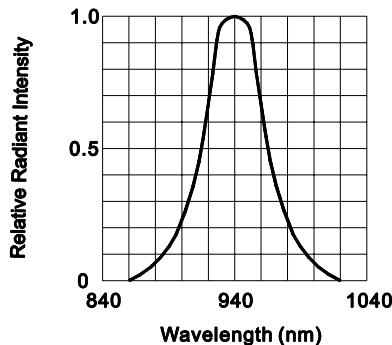
Package Dimensions

Notes:

- All dimensions are in millimeters (inches).
- Tolerance is $\pm 0.25\text{mm}$ (.010") unless otherwise noted.
- Protruded resin under flange is 1.5mm (.059") max.
- Lead spacing is measured where the leads emerge from the package.
- Specifications are subject to change without notice.

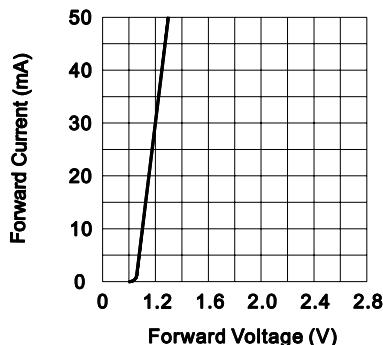
Absolute Maximum Ratings at $T_a=25^\circ\text{C}$

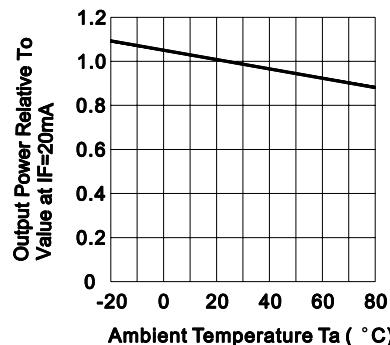
Parameter	Maximum Rating	Unit
Power Dissipation	90	mW
Peak Forward Current(300pps, 10 μs pulse)	1	A
Continuous Forward Current	60	mA
Reverse Voltage	5	V
Operating Temperature Range	-40°C to +85°C	
Storage Temperature Range	-55°C to +100°C	
Lead Soldering Temperature [1.6mm (.063 in.) from body]	260°C for 5 Seconds	

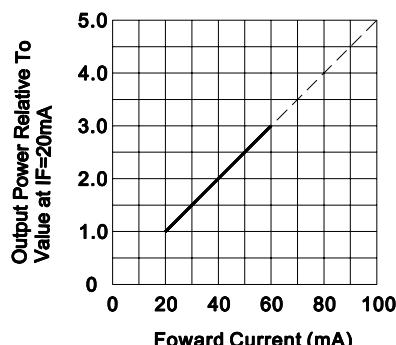

Electrical Optical Characteristics at $T_a=25^\circ\text{C}$

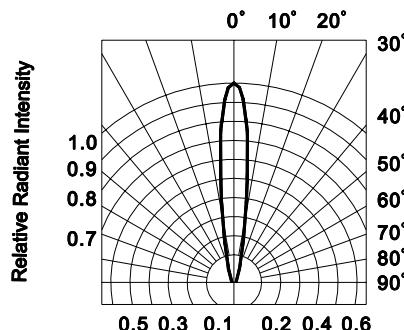
Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition
*Aperture Radiant Incidence	Ee	0.7	1.6		mW/cm^2	$I_f=20\text{mA}$
Radiant Intensity	Ie	5.25	12		mW/sr	$I_f=20\text{mA}$
Peak Emission Wavelength	λ Peak		940		nm	$I_f=20\text{mA}$
Spectral Line Half-Width	$\Delta\lambda$		50		nm	$I_f=20\text{mA}$
Forward Voltage	Vf		1.2	1.6	V	$I_f=20\text{mA}$
Reverse Current	Ir			100	μA	$V_R=5\text{V}$
View Angle (See Fig. 6)	$2\theta^{1/2}$		16		deg	


Note: *Ee is a measurement of the average radiant incidence upon a sensing area 1cm^2 in perpendicular to and


**Typical Electrical/Optical Characteristic Curves
(25°C Ambient Temperature Unless Otherwise Noted)**


FIG.1 SPECTRAL DISTRIBUTION


**FIG.2 FORWARD CURRENT VS.
AMBIENT TEMPERATURE**


**FIG.3 FORWARD CURRENT VS.
FORWARD VOLTAGE**

**FIG.4 RELATIVE RADIANT INTENSITY
VS. AMBIENT TEMPERATURE**

**FIG.5 RELATIVE RADIANT INTENSITY
VS. FORWARD CURRENT**

FIG.6 RADIATION DIAGRAM