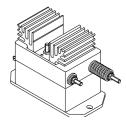
Voltage Transducer LV 100-3000

For the electronic measurement of voltages : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data

V _{PN} V _P I _{PN}	Primary nominal r.m.s. voltage Primary voltage, measuring range Primary nominal r.m.s. current		3000 0 ± 4500 3.33		V V mA
R _M	Measuring resistance		R _{M min}	min R _{Mmax}	
	with ± 15 V	@ $\pm 3000 V_{max}$ @ $\pm 4500 V_{max}$	0 0	170 90	Ω Ω
I _{sn}	Secondary nominal r.m.s. current		50		mA
K _N	Conversion ratio		3000 V / 50 mA		
Vc	Supply voltage (± 5 %)		± 15		V
I _c	Current consumption		10 + I _s		mA
Ň _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		9		kV


Accuracy - Dynamic performance data

Х _G е	Overall Accuracy @ \mathbf{V}_{PN} , $\mathbf{T}_{A} = 25^{\circ}$ C Linearity		± 0.7 < 0.1		% %
I _o	Offset current @ $\mathbf{I}_{P} = 0$, $\mathbf{T}_{A} = 25^{\circ}$ C	0°C + 70°C	Тур	Max	mΑ
I _{o⊤}	Thermal drift of \mathbf{I}_{O}		± 0.2	± 0.2	mA
t _r	Response time @ 90 % of $\mathbf{V}_{P \max}$		180	± 0.3	μs

General data

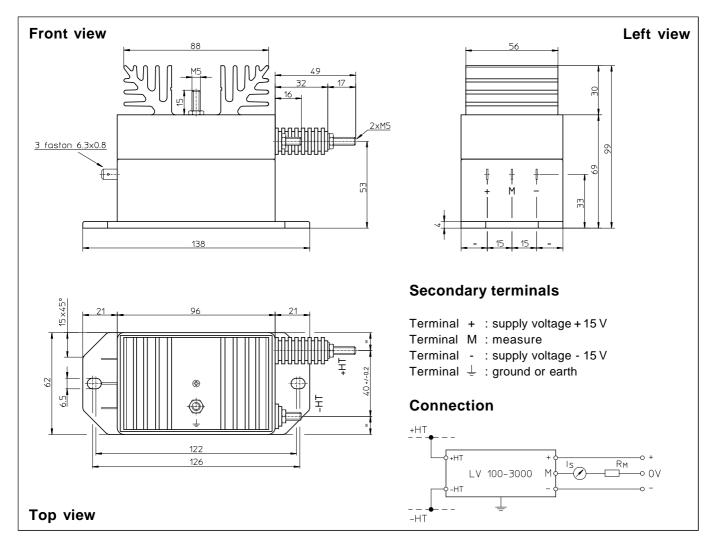
T _A	Ambient operating temperature	0 + 70	°C
Ts	Ambient storage temperature	- 25 + 85	°C
N	Turns ratio	30000 : 2000	
Р	Total primary power loss	10	W
R ₁	Primary resistance @ T _A = 25°C	900	kΩ
Rs	Secondary coil resistance @ $T_A = 70^{\circ}C$	60	Ω
m	Mass	850	g
	Standards 1)	EN 50178	

$V_{_{\rm PN}} = 3000 \text{ V}$

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Primary resistor **R**₁ incorporated into the housing.

Advantages


- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

Note : 1) A list of corresponding tests is available

Dimensions LV 100-3000 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary
- Connection of secondary
- Connection to the ground
- Fastening torque

± 0.3 mm

2 holes \emptyset 6.5 mm M5 threaded studs Faston 6.3 x 0.8 mm M5 threaded stud

2.2 Nm or 1.62 Lb. -Ft.

Remarks

- I_s is positive when V_P is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.