
Voltage Transducer LV 25-200

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

$V_{PN} = 200 \text{ V}$

Electrical data

$egin{array}{c} oldsymbol{V}_{PN} \ oldsymbol{V}_{P} \ oldsymbol{I}_{PN} \ oldsymbol{R}_{M} \end{array}$	Primary nominal r.m.s. voltage Primary voltage, measuring range Primary nominal r.m.s. current Measuring resistance		200 0 ± 3 10 R _{M min}	00 R _{Mmax}	V V mA
	with ± 12 V	@ ± 200 V _{max} @ ± 300 V	30 30	200 100	$\Omega = \Omega$
	with ± 15 V	@ $\pm 200 \text{ V}_{\text{max}}$ @ $\pm 200 \text{ V}_{\text{max}}$ @ $\pm 300 \text{ V}_{\text{max}}$	100 100	320 180	Ω Ω
I _{sn} K _n	Secondary nominal r.m.s. current Conversion ratio		25 200 V /	⁷ 25 mA	mA
V _C I _C V _d	Supply voltage (\pm 5 %) Current consumption R.m.s. voltage for AC isolation test $^{1)}$, 50 Hz, 1 mn		± 12 15 10 (@±15V)+ I _s 4.1		V mA kV

Accuracy - Dynamic performance data

X _G e _L	Overall Accuracy @ V_{PN} , $T_A = 25^{\circ}$ C Linearity		± 0.8 < 0.2		% %
I _о I _{от}	Offset current @ $\mathbf{I}_{\rm p} = 0$, $\mathbf{T}_{\rm A} = 25^{\circ}{\rm C}$ Thermal drift of $\mathbf{I}_{\rm O}$	- 25°C + 25°C + 25°C + 70°C	Typ ± 0.10 ± 0.10	Max ± 0.15 ± 0.60 ± 0.60	mA mA
$\mathbf{t}_{_{\mathrm{r}}}$	Response time @ 90 % of $\mathbf{V}_{\mathrm{P max}}$		15		μs

General data

\mathbf{T}_{A}	Ambient operating temperature	- 25 + 70	°C
T _s	Ambient storage temperature	- 40 + 85	°C
N	Turns ratio	2500 : 1000	
P	Total primary power loss	2	W
R,	Primary resistance @ T _a = 25°C	20	kΩ
$\mathbf{R}_{\mathrm{s}}^{'}$	Secondary coil resistance @ T _A = 70°C	110	Ω
m	Mass	60	g
	Standards 2)	EN 50178	

Notes: 1) Between primary and secondary

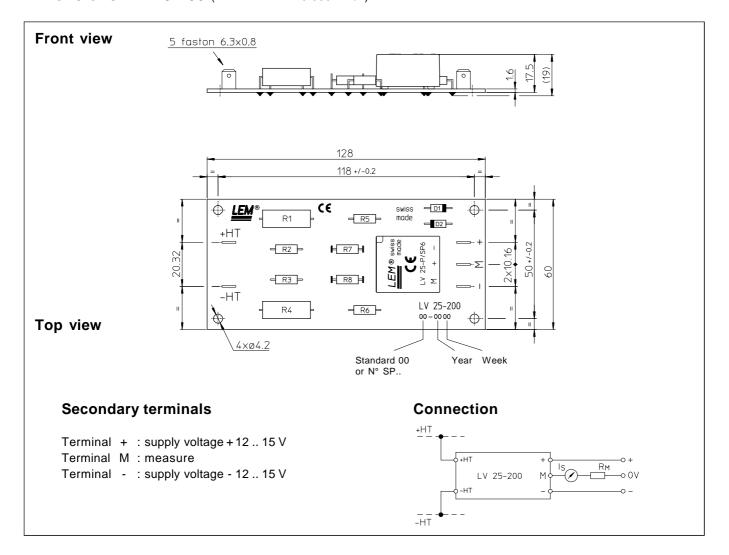
Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Transducer with insulated plastic case recognized according to UL 94-V0
- Primary resistor R₁ and transducer mounted on printed circuit board 128 x 60 mm.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.

Applications


- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

980909/2

²⁾ A list of corresponding tests is available

Dimensions LV 25-200 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance ± 0.3 mm

ullet Fastening 4 holes arnothing 4.2 mm

• Connection of primary Faston 6.3 x 0.8 mm

• Connection of secondary Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when V_p is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.