Voltage Transducer LV 25-400

For the electronic measurement of voltages : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data

CE

$\mathbf{V}_{_{\mathrm{PN}}}$	Primary nominal r.m.s. voltage		400		V
V _P	Primary voltage, measuring range		0 ± 600		V
I _{PN}	Primary nominal r.m.s. current		10		mΑ
R _M	Measuring resistance	e	$\mathbf{R}_{_{Mmin}}$	R _{Mmax}	c
	with ± 12 V	$@ \pm 400 V_{max}$	30	200	Ω
		@ ± 600 V max	30	100	Ω
	with ± 15 V	@ ± 400 V max	100	320	Ω
		@ $\pm 600 V_{max}^{max}$	100	180	Ω
I _{SN}	Secondary nominal r.	m.s. current	25		mΑ
ĸ	Conversion ratio		400 V / 25 mA		
V _c	Supply voltage (± 5 %)		± 12 15		V
۱ _°	Current consumption		10(@±15V)+ I _s n		mA
I _c V _d	R.m.s. voltage for AC isolation test ¹⁾ , 50 Hz, 1 mn		4.1	0	kV

Accuracy - Dynamic performance data

X _G	Overall Accuracy @ V_{PN} , $T_{A} = 25^{\circ}$ C Linearity	c	± 0.8 < 0.2	% %
I _o	Offset current @ $I_p = 0$, $T_A = 25^{\circ}C$ Thermal drift of I_p	- 25°C + 25°C	Typ Max ± 0.15 ± 0.10 ± 0.60 ± 0.10 ± 0.60	5 mA) mA
•от		+ 25°C + 70°C	$\pm 0.10 \pm 0.60$) mA
t.	Response time @ 90 % of V		15	us

General data

T _A T _s N	Ambient operating temperature Ambient storage temperature Turns ratio	- 25 + 70 - 40 + 85 2500 : 1000	°C °C
P R ₁ R _s m	Total primary power loss Primary resistance @ $T_A = 25^{\circ}C$ Secondary coil resistance @ $T_A = 70^{\circ}C$ Mass Standards ²	4 40 110 60 EN 50178	W kΩ Ω g

Notes : 1) Between primary and secondary

²⁾ A list of corresponding tests is available

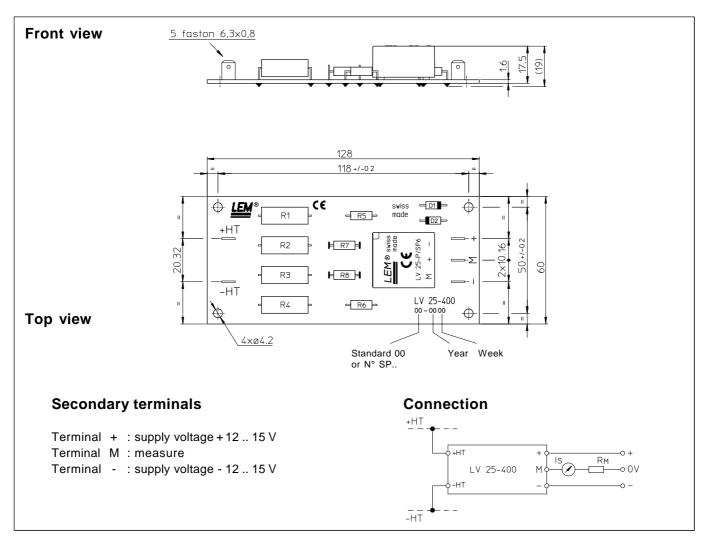
V_{PN} =

- Closed loop (compensated) voltage transducer using the Hall effect
- Transducer with insulated plastic case recognized according to UL 94-V0
- Primary resistor R₁ and transducer mounted on printed circuit board 128 x 60 mm.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- · High immunity to external interference.

Applications


- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- · Power supplies for welding applications.

400 V

www.lem.com

Dimensions LV 25-400 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary
- Connection of secondary

± 0.3 mm	
4 holes Ø 4.2	mm

- Faston 6.3 x 0.8 mm
- Faston 6.3 x 0.8 mm

Remarks

- $\mathbf{I}_{_{\mathrm{S}}}$ is positive when $\mathbf{V}_{_{\mathrm{P}}}$ is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.