

The LX1910 PWM buck regulator

achieves very high efficiencies over a

broad range of operating load

conditions. The LX1910 implements

a load-detection architecture and

enters a power-saving PFM mode

when driving small load currents

ensuring optimal regulator efficiency

over the entire output current range

implements a fixed frequency of

1MHz (typ), the transconductance

error amplifier has 12µA of drive

with an output voltage swing rail to

operating

thus maximizing battery life.

The PWM

捷多邦,专业PCB打样工厂,24小时加急出货

LX1910

»*Microsemi*

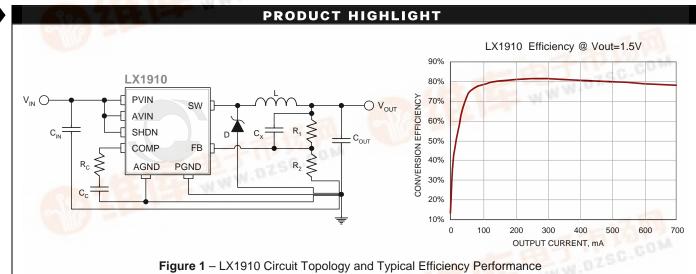
Step-Down Regulator

PRODUCTION DATA SHEET

KEY FEATURES

- Internal Reference 1.17V ±2% Accuracy (Line and Temperature)
- . 4V to 6.0V Input Range
- Adj. Output From 1.17V to VIN
- Output Current (I_{DC} >850mA)
- Quiescent Current < 300µA
- 1MHz Operation Frequency
- MSOP 8-Pin

APPLICATIONS/BENEFITS


- Portable Microprocessor Core Voltage Supplies
- 5V to 3V

rail. Compensation is external for SmartPhones, PDAs, or other batterymaximum user flexibility. operated devices

mode

IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com

DESCRIPTION

The LX1910 does not require a

minimum load current for stable

operation. There is no Under Voltage

Lockout for the input voltage,

operational range includes 4V to 6V.

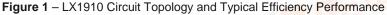
The regulator is capable of providing

an output dc load current of 850mA.

The SHDN pin places the device in a

sleep-mode drawing less than 1µA of

The LX1910 comes in space-saving


MSOP package allowing a complete

application circuit to occupy a very

small PCB area. These features make

the LX1910 ideal for use in

quiescent current.

PACKAGE ORDER INFO						
	T _J (°C)	Input Voltage	Output Voltage Range	DU Plastic MSOP 8-PIN		
				RoHS Compliant / Pb-free		
Γ	0 to 85	4.5V - 6.0V	1.17V to V _{IN}	LX1910CDU		

Available in Tape & Reel. Append the letters "TR" to the part number (i.e. LX1910-13016CDU-TR)

Page 1

Step-Down Regulator

www.Microsemi.com

ABSOLUTE MAXIMUM RATINGS

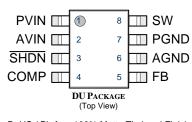
Input Voltage (IN) or SHDN to GND	-0.3V to 7.0V
SW to GND	0.3V to $(V_{IN} + 0.3V)$
V _{FB} to GND	-0.3V to +2V
SW Peak Current (Internally Limited)	
Operating Temperature Range	-40°C to +125°C
Storage Temperature Range, T _A	
Maximum Junction Temperature	150°C
RoHS / Pb-free Peak Package Solder Reflow Temperature	
(40 seconds maximum exposure)	

Note: Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of specified terminal.

THERMAL DATA

DU Plastic MSOP 8-Pin

THERMAL RESISTANCE-JUNCTION TO AMBIENT, θ_{JA}


Junction Temperature Calculation: $T_J = T_A + (P_D x \theta_{JA})$. The θ_{JA} numbers are guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.

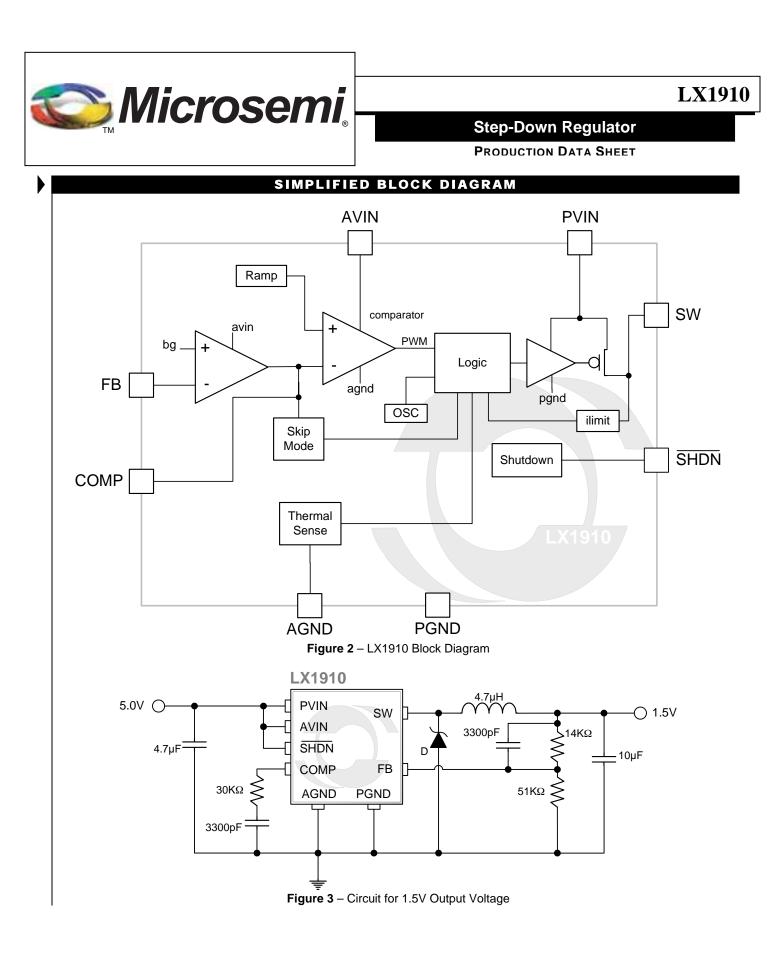
FUNCTIONAL PIN DESCRIPTION						
NAME	DESCRIPTION					
SW	Inductor and commutation diode connection point. Connects to internal MOSFET drain.					
AGND	Analog circuit ground providing bias for IC operation.					
FB	Feedback input for setting adjustable output voltage					
SHDN	Enable control input. Reduces quiescent current to $1\mu A$. Pin 8, Output becomes high impedance.					
PVIN	Unregulated supply voltage input connected to PMOS Source. Input range from +2.7V to 6.0V					
COMP	Frequency Compensation of the overall loop is effected by placing a series R/C combination between COMP pin and GND.					
AVIN	Unregulated supply voltage input. Input range from +4V to 6.0V					
PGND	Power ground (return path for internal PMOS gate driver).					

206°C/W

PRODUCTION DATA SHEET

PACKAGE PIN OUT

RoHS / Pb-free 100% Matte Tin Lead Finish


Step-Down Regulator

PRODUCTION DATA SHEET

ELECTRICAL CHARACTERISTICS

Specifications apply over junction temperature of: $0^{\circ}C \le T \le 85^{\circ}C$ for $V_{IN} = 5V$ (except where otherwise noted). Typical values are at $T_A = 25^{\circ}C$.

Parameter	Parameter Symbol Test Conditions		ns	Min	Тур	Max	Units
Operating Range	V _{IN}	Functional operation guaranteed by design		3.5		6.0	V
Output Voltage Range	V _{OUT}	Closed loop operating range		V _{FB}		0.95*VIN	V
Feed Back Threshold	V _{FBT}	$4V \leq V_{IN} \leq 6V$		1.146	1.170	1.193	V
FB Input Current	I _{FB}	V _{FB} = 1.2V			300	500	nA
	I _{SOURCE}	V_{FB} -125mV of Overdrive, V_{COMP} = 2.5V		10	16		μA
EA Drive Current (COMP Pin)	I _{SINK}	V_{FB} +125mV of Overdrive, V_{COMP} = 2.5V		10	16		μΑ
		VOL, Sinking 10µA			95		mV
EA Output Swing (COMP Pin)	V _{EA OUT}	VOH, Sourcing 10µA			4.86		V
Quiescent Operating Current	Ι _Q	Pin 2 Supply Current			250	400	μΑ
	IQVIN _{SD}	V _{SHDN} = 0V, SW Pin open				1	μA
Sleep (Shutdown Mode) Current	IQVINSD	V _{SHDN} = 0V, SW grounded			2	5	μA
Shutdown Input Bias Current	I _{SD_IB}	$\overline{\text{SHDN}} = \text{GND or } \overline{\text{SHDN}} = 5\text{V}$		-100		100	nA
Shutdown Voltage Threshold	V _{SD}		Device Off			0.2*V _{IN}	V
			Device On	0.8*V _{IN}			V
P-Channel Switch ON Resistance	R _{DS(ON)}	$I_{SW} = 0.5A$ $I_{SW} = 0.5A$ (assured by design, not ATE tested)			0.53	0.8	Ω
Maximum Duty Cycle	D			80	100		%
SW Leakage Current	I _{LEAK}				1	5	μA
P-Channel Current Limit				900	950		mA
Frequency	F _{OP}			0.80	1.07	1.2	MHz
Closed Loop Load Regulation	Load Reg	$V_0 = 1.5V$, 5mA $\leq I_0 \leq$ 700mA, ckt figure 3			0.35	0.5	% Vo
Thermal Shutdown	T _{SD}			125	150		°C

Step-Down Regulator

PRODUCTION DATA SHEET

APPLICATION NOTE

FUNCTIONAL DESCRIPTION

The LX1910 implements a PFM / PWM architecture that improves power management efficiency across the output load range.

OUTPUT VOLTAGE PROGRAMMING

Resistors R1 and R2 program the output voltage. An optional capacitor C_X may be inserted across R1 to improve the transient response (see Figure 1). The value of R2 should be less than 100K Ω . The value of R1 can be determined using the following equation, note V_{REF} is also referred to as V_{FBT} .

$$R1 = R2 \left[\left(\frac{V_{OUT}}{V_{REF}} \right) - 1 \right]$$

DESIGN EXAMPLE:

Let R2 equal 50K and the required V_{OUT} equal to 3.0V.

 $R1 = 50K \left[\left(\frac{3V}{1.17} \right) - 1 \right] = 78K\Omega$

DIODE SELECTION

A Schottky diode is recommended for use with the LX1910 because it provides fast switching and superior reverse recovery performance. The *Microsemi* UPS5817 (20V @ 1A) makes an effective choice for most applications.

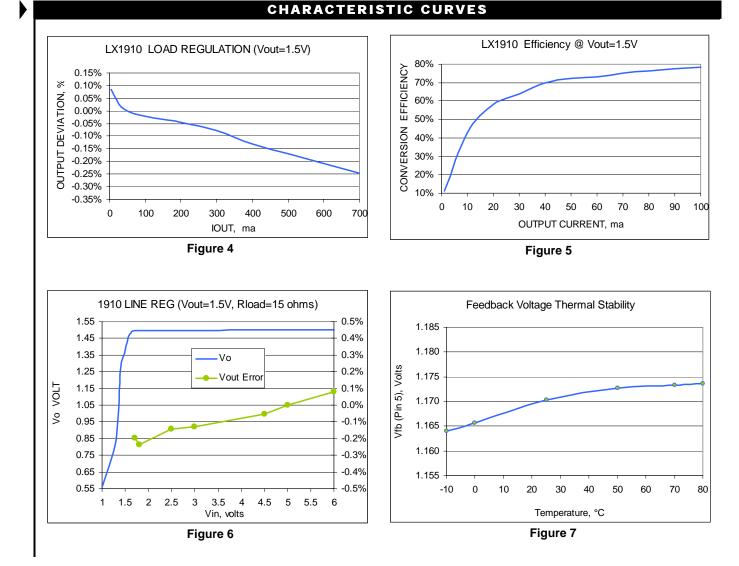
INDUCTOR SELECTION

Selecting the appropriate inductor type and value ensures optimal performance of the converter circuit for the intended application. This selection process requires the designer to make trade-offs between circuit performance and cost. A primary consideration requires the selection of an inductor that will not saturate at the peak current level. Other considerations that affect inductor choice include EMI, output voltage ripple, and overall circuit efficiency. The inductor that works best depends upon the application's requirements. Further, some experimentation with actual devices in-circuit is typically necessary to make the most effective choice.

The LX1910 allows for a broad selection of inductor values and choosing a value between 2.2μ H and 30μ H supports a majority of applications. Selecting a larger inductor value can increase efficiency and reduce output voltage ripple. Smaller inductors typically provide smaller package size (critical in many portable applications) at the expense of increasing output ripple current. Regardless of inductor value, selecting a device manufactured with a ferrite-core produces lower losses at higher switching frequencies and thus better overall performance.

CAPACITOR SELECTION

To minimize ripple voltage, output capacitors with a low series resistance (ESR) are recommended. Multi-layer ceramic capacitors with X5R or X7R dielectric make an effective choice because they feature small size, very low ESR, a temperature stable dielectric, and can be connected in parallel to increase capacitance. Typical capacitance values of 4.7 to 30µF have proven effective. Other low ESR capacitors such as solid tantalum, specialty polymer, or organic semiconductor, make effective choices provided that the capacitor is properly rated for the output voltage and ripple current. Finally, choose an input capacitor of sufficient size to effectively decouple the input voltage source impedance (e.g., $C_{IN} \ge 4.7 \mu F$).


LAYOUT CONSIDERATIONS

The high peak currents and switching frequencies present in DC/DC converter applications require careful attention to device layout for optimal performance. Basic design rules include: (1) maintaining wide traces for power components (e.g., width > 50mils); (2) place C_{IN} , C_{OUT} , the Schottky diode, and the inductor close to the LX1910; (3) minimizing trace capacitance by reducing the etch area connecting the SW pin to the inductor; and (4) minimizing the etch length to the FB pin to reduce noise coupling into this high impedance sense input. Other considerations include placing a 0.1uF capacitor between the LX1910 V_{OUT} pin and GND pin to reduce high frequency noise and decoupling the V_{IN} pin using a 0.1µF capacitor.

Step-Down Regulator

PRODUCTION DATA SHEET

www.Microsemi.com

CHARACTERISTIC CURVES

Step-Down Regulator PRODUCTION DATA SHEET

Figure 10 – Switching Waveforms: PFM Mode CH3: V_{SW} (pin 8) and CH1: V_{OUT} ; (V_{IN} = 5.0V; I_{OUT} = 1mA)

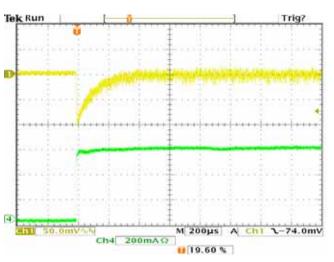


Figure 9– Output Load Step Response: CH1: V_{OUT} and CH4: I_{OUT}; Condition: V_{IN} = 5.0V; I_{STEP} = 50 to 600mA

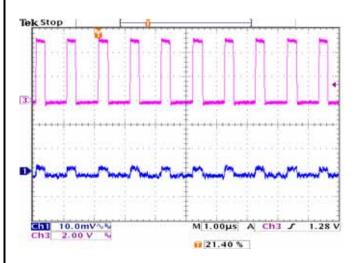
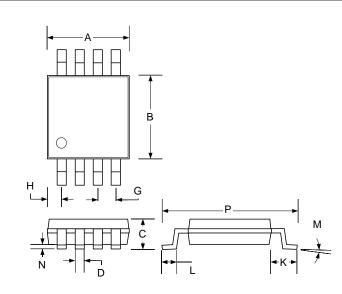


Figure 11 – Switching Waveforms: PWM Mode CH3: V_{SW} (pin 8) and CH1: V_{OUT} ; (V_{IN} = 5.0V; I_{OUT} = 10mA)

DU


LX1910

Step-Down Regulator

PRODUCTION DATA SHEET

PACKAGE DIMENSIONS

8-Pin Miniature Shrink Outline Package (MSOP)

Dim	MILLIMETERS		INCHES		
Dim	MIN	MAX	MIN	MAX	
Α	2.85	3.05	.112	.120	
В	2.90	3.10	.114	.122	
С	—	1.10	—	0.043	
D	0.25	0.40	0.009	0.160	
G	0.65 BSC		0.025 BSC		
Н	0.38	0.64	0.015	0.025	
J	0.13	0.18	0.005	0.007	
K	0.95 BSC		0.037 BSC		
L	0.40	0.70	0.016	0.027	
Μ	3°		3°		
Ν	0.05	0.15	0.002	0.006	
Р	4.75	5.05	0.187	0.198	

Note: Dimensions do not include mold flash or protrusions; these shall not exceed 0.155mm(0.006") on any side. Lead dimension shall not include solder coverage.

NOTES

PRODUCTION DATA – Information contained in this document is proprietary to Microsemi and is current as of publication date. This document may not be modified in any way without the express written consent of Microsemi. Product processing does not necessarily include testing of all parameters. Microsemi reserves the right to change the configuration and performance of the product and to discontinue product at any time.