## 4 X 4 X 2 CROSSPOINT SWITCHES WITH CONTROL MEMORY

－LOW ON RESISTANCE－ $75 \Omega$ TYP AT $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$
－＂BUILT－IN＂LATCHED INPUTS
－LARGE ANALOG SIGNAL CAPACITY $\pm \mathrm{V}_{\mathrm{DD}} / 2$
－ 10 MHz SWITCH BANDWITH
－MATCHED SWITCH CHARACTERISTICS
－$\Delta \mathrm{RON}=8 \Omega$ TYP， $\mathrm{AT} \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$
－HIGH LINEARITY－ $0.25 \%$ DISTORTION TYP， AT $\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}$ AND $\mathrm{RI}=1 \Omega$
－STANDARD CMOS NOISE IMMUNITY

## DESCRIPTION

The M22101 and M22102 crosspoint switches con－ sist of $4 \times 4 \times 2$ arrays of crosspoints（transmission gates）， 4 －line to 16 －line decoders，and 16 latch cir－ cuits．Any one of the sixteen crosspoint pairs can be selected by applying the appropriate four－line ad－ dress and any number of crosspoint pairs canbe ON simultaneously．Corresponding crosspoints in each array are turned on and OFF simultaneously，also．
In the M22101，the selected crosspoint pair can be turned on or off by applying a logical ONE or ZERO， respectively，to the data input，and applying a ONE to the strobe input．When the device is＂power－up＂， the state of the 16 switches is indeterminate．

Therefore all switches must be turned off by putting the strobe hight，data－in－low，and the addressing all switches in succession．
The selected pair of crosspoints in the M22102 is turned on by applying a logical ONE to the $\mathrm{K}_{\mathrm{a}}$（set） input while a logical ZERO is on the $\mathrm{Kb}_{\mathrm{b}}$（reset）input， and turned off by applying a logical ONE to the $\mathrm{K}_{\mathrm{b}}$ input while a logical ZERO is on the $K_{a}$ input．In this respect the control latches of the M22102 are similar to SET／RESET flip－flops．They differ，however，in that the simultaneous application of ONEs to the Ka and $\mathrm{K}_{\mathrm{b}}$ inputs turns off（resets）all crosspoints．All crosspoints in both devices must be turned off as $V_{D D}$ is applied．


## PIN CONNECTIONS




ऽpdf．dzsc．com

## ABSOLUTE MAXIMUM RATING

| Symbol | Parameter | Value | Unit |
| :---: | :--- | :---: | :---: |
| $\mathrm{V}_{\mathrm{DD}}$ | Supply Voltage: Ceramic Type <br> Plastic Type | -0.5 to +20 |  |
| $\mathrm{~V}_{\mathrm{i}}$ | Input Voltage | -0.5 to +18 | V |
| $\mathrm{I}_{\mathrm{I}}$ | DC Input Current (any one input) | -0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$ | V |
| $\mathrm{P}_{\text {tot }}$ | Total Power Dissipation (per package) <br> Dissipation per Output Transistor <br> for Top = Full Package Temperature Range | 200 | mA |
| $\mathrm{~T}_{\text {op }}$ | Operating Temperature: Ceramic Type |  |  |
|  |  | mlastic Type |  |

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condtions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

## RECOMMENDED OPERATING CONDITIONS

| Symbol | Parameter | Value | Unit |
| :---: | :--- | :---: | :---: |
| $\mathrm{V}_{\mathrm{DD}}$ | Supply Voltage: Ceramic Type | 3 to 18 |  |
| Plastic Type | 3 to 15 | V |  |
| $\mathrm{~V}_{\mathrm{I}}$ | Input Voltage | 0 to $\mathrm{V}_{\mathrm{DD}}$ | V |
| $\mathrm{T}_{\mathrm{op}}$ | Operating Temperature: Ceramic Type |  |  |
|  |  | -55 to +125 | V |

CONTROL TRUTH TABLE FOR M22101

| Function | Address |  |  |  | Strobe | Data | Select |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ |  |  |  |
| Switch-on | 1 | 1 | 1 | 1 | 1 | 1 | $(\mathrm{X} 4 \mathrm{Y} 4) \&\left(\mathrm{X} 4^{\prime} \mathrm{Y} 4^{\prime}\right)$ |
| Switch-off | 1 | 1 | 1 | 1 | 1 | 0 | $(\mathrm{X} 4 \mathrm{Y} 4) \&\left(\mathrm{X} 4^{\prime} \mathrm{Y} 4^{\prime}\right)$ |
| No Change | X | X | X | X | 0 | X | $\mathrm{X} \times \mathrm{XX}$ |

Note: 1 = High, $0=$ Low, $\mathrm{X}=$ Don't Care

CONTROL TRUTH TABLE FOR M22102

| Function | Address |  |  |  | Strobe | Data | Select |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D |  |  |  |
| Switch-on | 1 | 1 | 1 | 1 | 1 | 0 | $(\mathrm{X} 4 \mathrm{Y} 4)$ \& ( $\mathrm{X} 4^{\prime} \mathrm{Y} 4^{\prime}$ ) |
| Switch-off | 1 | 1 | 1 | 1 | 0 | 1 | ( X 4 Y 4 ) \& ( $\mathrm{X} 4^{\prime} \mathrm{Y} 4^{\prime}$ ) |
| All Switch-off | X | X | X | X | 1 | 1 | All |
| No Change | X | X | X | X | 0 | 0 | X X X X |

Note: $1=$ High, $0=$ Low, $X=$ Don't Care

DECODER TRUTH TABLE

| Address |  |  |  | Select |  | Address |  |  |  | Select |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | B | C | D |  |  | A | B | C | D |  |  |
| 0 | 0 | 0 | 0 | X 1 Y 1 | X1' Y1 ${ }^{\prime}$ | 0 | 0 | 0 | 1 | X1 Y3 | X1' Y3' |
| 1 | 0 | 0 | 0 | X2 Y1 | X2' Y1' | 1 | 0 | 0 | 1 | X2 Y3 | X2' Y3' |
| 0 | 1 | 0 | 0 | X3 Y1 | X3' Y $1^{\prime}$ | 0 | 1 | 0 | 1 | X3 Y3 | X3' Y3' |
| 1 | 1 | 0 | 0 | X4 Y1 | X4' Y1 ${ }^{\prime}$ | 1 | 1 | 0 | 1 | X4 Y3 | X4' Y3' |
| 0 | 0 | 1 | 0 | X1 Y2 | X1' Y2' | 0 | 0 | 1 | 1 | X1 Y4 | X1' Y4' |
| 1 | 0 | 1 | 0 | X2 Y2 | X2' Y2' | 1 | 0 | 1 | 1 | X2 Y4 | X2' Y4' |
| 0 | 1 | 1 | 0 | X3 Y2 | X3' Y2' | 0 | 1 | 1 | 1 | X3 Y4 | X3' Y4' |
| 1 | 1 | 1 | 0 | X4 Y2 | X4' Y2' | 1 | 1 | 1 | 1 | X4 Y4 | X4' Y4' |

FUNCTIONAL AND BLOCK DIAGRAM


STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

| Symbol | Parameter |  | Test Conditios |  |  | Value |  |  |  |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} V_{\mathbf{I}} \\ (\mathrm{V}) \end{gathered}$ | VDD <br> (V) | TLow * |  | $25^{\circ} \mathrm{C}$ |  |  | THIGH * |  |  |
|  |  |  |  |  |  | Min. | Max. | Min. | Typ. | Max. | Min. | Max. |  |
| CROSSPOINT |  |  |  |  |  |  |  |  |  |  |  |  |  |
| IL | Quiescent Supply Current | F1 |  |  | 5 |  |  |  | 0.04 | 5 |  | 150 | $\mu \mathrm{A}$ |
|  |  |  |  |  | 10 |  |  |  | 0.04 | 10 |  | 300 |  |
|  |  |  |  |  | 15 |  |  |  | 0.04 | 20 |  | 600 |  |
|  |  |  |  |  | 20 |  |  |  | 0.08 | 100 |  | 3000 |  |
|  |  | B1 |  |  | 5 |  |  |  | 0.04 | 20 |  | 150 |  |
|  |  |  |  |  | 10 |  |  |  | 0.04 | 40 |  | 300 |  |
|  |  |  |  |  | 15 |  |  |  | 0.04 | 80 |  | 600 |  |
| Ron | On Resistance | F1 | Any Switch |  | 5 |  | 450 |  | 225 | 1250 |  | 1625 | $\Omega$ |
|  |  |  |  |  | 10 |  | 135 |  | 85 | 180 |  | 230 |  |
|  |  |  |  |  | 12 |  | 100 |  | 75 | 135 |  | 175 |  |
|  |  |  |  |  | 15 |  | 70 |  | 65 | 95 |  | 125 |  |
|  |  | B1 | $\mathrm{V}_{\mathrm{IS}}=0$ to $\mathrm{V}_{\text {DD }}$ |  | 5 |  | 1000 |  | 225 | 1250 |  | 1440 |  |
|  |  |  |  |  | 10 |  | 145 |  | 85 | 180 |  | 205 |  |
|  |  |  |  |  | 12 |  | 110 |  | 75 | 135 |  | 155 |  |
|  |  |  |  |  | 15 |  | 75 |  | 65 | 95 |  | 110 |  |
| $\triangle \mathrm{ON}$ | Resistance $\Delta$ Ron $_{\text {on }}$ (Between any two channels) |  |  |  | 5 |  |  |  | 35 |  |  |  | $\Omega$ |
|  |  |  |  |  | 10 |  |  |  | 20 |  |  |  |  |
|  |  |  |  |  | 12 |  |  |  | 18 |  |  |  |  |
|  |  |  |  |  | 15 |  |  |  | 15 |  |  |  |  |
| OFF <br> Channel <br> Leakage <br> Current |  | F1 | All Switch OFF | 0/18 | 18 |  | $\pm 0.1$ |  | $\pm 10^{-3}$ | $\pm 0.1 \bullet$ |  | $\pm 1$ | $\mu \mathrm{A}$ |
|  |  | B1 |  | 0/15 | 15 |  | $\pm 0.3$ |  | $\pm 10^{-3}$ | $\pm 0.3$ |  | $\pm 1$ |  |

CONTROL

| VIL | Input Low Voltage |  | OFF Switch$\mathrm{I} L<0.2 \mu \mathrm{~A}$ |  | 5 |  | 1.5 |  |  | 1.5 |  | 1.5 | V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 10 |  | 3 |  |  | 3 |  | 3 |  |
|  |  |  |  | 15 |  | 4 |  |  | 4 |  | 4 |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input High Voltage |  |  | ON Switch see Ron Characteristics |  | 5 | 3.5 |  | 3.5 |  |  | 3.5 |  | V |
|  |  |  |  |  | 10 | 7 |  | 7 |  |  | 7 |  |  |  |
|  |  |  |  |  | 15 | 11 |  | 11 |  |  | 11 |  |  |  |
| 1 | Input Curren | F1 |  | Any Control Input | 0/18 | 18 |  | $\pm 0.1$ |  | $\pm 10^{-5}$ | $\pm 0.1$ |  | $\pm 1$ | $\mu \mathrm{A}$ |
|  |  | B1 | 0/15 |  | 15 |  | $\pm 0.3$ |  | $\pm 10^{-5}$ | $\pm 0.3$ |  | $\pm 1$ |  |  |
| $\mathrm{Cl}_{1}$ | Input Capacitance |  | Any Input |  |  |  |  |  | 5 | 7.5 |  |  | pF |  |

- Determined by minimum feasible leakage measurement for automatic testing
* Tlow $=-55^{\circ} \mathrm{C}$ for HCC device: $-40^{\circ} \mathrm{C}$ for HCF device.
* $\mathrm{T}_{\text {HIGH }}=+125^{\circ} \mathrm{C}$ for HCC device: $+85^{\circ} \mathrm{C}$ for HCF device.

The Noise Margin for both " 1 " and " 0 " level is: 1 V min. with $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, 2 \mathrm{~V}$ min. with $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, 2.5 \mathrm{~V}$ min. with $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$

DYNAMIC ELECTRICAL CHARACTERISTICS $\left(T_{a m b}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{~K} \Omega\right.$, typical temperature coefficent for all $V_{D D}$ values is $03 \% /{ }^{\circ} \mathrm{C}$, all input rise and fall times $=20 \mathrm{~ns}$ )

| Symbol | Parameter | Test Conditions |  | Value |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | VDD (V) | Min. | Typ. | Max. |  |
| tpHL <br> tplh | Propagation Delay Time Address or Strobe Inputs to Output | $\begin{aligned} & R_{L}=10 \mathrm{~K} \Omega \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$ | 12 |  | 200 |  | ns |
| tphl tpLH | Propagation Delay Time Across Crosspoint |  |  |  | 20 |  | ns |
|  | Minimum Strobe Pulse Width |  |  |  | 80 |  | ns |

## Plastic DIP24 (0.25) MECHANICAL DATA

| DIM. | mm |  |  | inch |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MIN. | TYP. | MAX. | MIN. | TYP. | MAX. |
| a1 |  | 0.63 |  |  | 0.025 |  |
| b |  | 0.45 |  |  | 0.018 |  |
| b1 | 0.23 |  | 0.31 | 0.009 |  | 0.012 |
| b2 |  | 1.27 |  |  | 0.050 |  |
| D |  |  | 32.2 |  |  | 1.268 |
| E | 15.2 |  | 16.68 | 0.598 |  | 0.657 |
| e |  | 2.54 |  |  | 0.100 |  |
| e3 |  | 27.94 |  |  | 1.100 |  |
| F |  |  | 14.1 |  |  | 0.555 |
| 1 |  | 4.445 |  |  | 0.175 |  |
| L |  | 3.3 |  |  | 0.130 |  |



## Ceramic DIP24 MECHANICAL DATA

| DIM. | mm |  |  | inch |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MIN. | TYP. | MAX. | MIN. | TYP. | MAX |
| A |  |  | 32.3 |  |  | 1.272 |
| B | 13.05 |  | 13.36 | 0.514 |  | 0.526 |
| C | 3.9 |  | 5.08 | 0.154 |  | 0.200 |
| D | 3 |  |  | 0.118 |  |  |
| E | 0.5 |  | 1.78 | 0.020 |  | 0.070 |
| e3 |  | 27.94 |  |  | 1.100 |  |
| F | 2.29 |  | 2.79 | 0.090 |  | 0.110 |
| G | 0.4 |  | 0.55 | 0.016 |  | 0.022 |
| 1 | 1.17 |  | 1.52 | 0.046 |  | 0.060 |
| L | 0.22 |  | 0.31 | 0.009 |  | 0.012 |
| M | 1.52 |  | 2.49 | 0.060 |  | 0.098 |
| N1 | $4^{\circ}$ (min.), $15^{\circ}$ (max.) |  |  |  |  |  |
| P | 15.4 |  | 15.8 | 0.606 |  | 0.622 |
| Q |  |  | 5.71 |  |  | 0.225 |



## M22101/M22102

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use ascritical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.
© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

