MULTI OUTPUT VOLTAGE REGULATOR

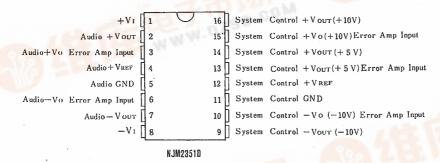
■ GENERAL DESCRIPTION

NJM2351 is series regulator with positive output, negative output and positive five peices output, which can deliver up to 200mA output current with additional external transistors. System A in positive and negative output have ripple filter internally for audio system. System B positive output is applied for other system control.

■ FEATURES

- Operating Voltage (±13V∼±21V)
- Dual Supply Operation
- Internal Ripple Filter Circuit
- Package Outline

DIP16


Bipolar Technology

■ PACKAGE OUTLINE

NJM2351D

PIN CONFIGURATION

■ TEST CIRCUIT

Fig. 1 O VISI 16 10V 8. 95 K 5 V 15 3. 87 ≶ 11.8K 100μ 1. 13 K § 100μ 100μ 2. 26 K 13 1. 12 K 12 11 Cref - Cref 100μ **≨** 2. 09 K 2. 29 K ≥ <u></u>
100μ 10 13K .20.3 K ≷

Note: 1. The accuracy of all resistors should be $\pm 1\%$.

2. The $h_{\rm FE}$ value of all transistors is $80 \sim 100$.

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	±Vι	±22	V
Output Current Pin 2	I02	+4	mA
Pin 7	I07	-4	mA
Pin 14, 16	I014,16	+ 8	mA
Pin 9	I09	-8	mA
Power Dissipation	Po	700	mW
Operating Temperature Range	Topr	-10~+75	
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

[1] Audio System (Ta=25°C, ±V₁=±16V, I₀=100mA)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	V _O		±6.65	±7.0	±7.35	V
Line Regulation	Δ٧0-٧1	$V_1 = \pm 13 \sim \pm 21 V$		7	100	mV
Load Regulation	ΔV _O -I _O	$I_{O} = 1 \sim 200 \text{mA}$	ľ —	16	100	mV.
Ripple Rejection	RR	$f=120$ Hz, $C_{REF}=100\mu$ F	67	77		dB
Output Noise Voltage	V _{NO}	JISA, $C_{REF} = 100 \mu F$		14		μV
Positive Quiescent Current	+I _Q	$V_1 = +16V$		5.1	8	mA
Minimum Output Voltage	V _{OL}	$V_1 = \pm 13V$, $I_O = 200mA$	±6.5	_		v
Reference Voltage	VREF		1.070	1.125	1.180	v
Temperature Coefficient of	,					
Reference Voltage	$\Delta V_{REF}/\Delta T$		-	0.1	_	mV/°C
Output Resistance	Ro	f=1kl·lz	_	86	_	mΩ

■ ELECTRICAL CHARACTERISTICS

[II] System Control

(1) 10V Type (Ta=25°C, $\pm V_{1S1} = \pm 15V$, $I_0 = 200 \text{mA}$, $\pm V_1 = 16V$)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	V _o		±9.5	± 10	±10.5	v
Line Regulation	ΔV _O -V _{II}	$V_{ISI} = \pm 11.5 \sim \pm 20V$	-	3	40	mV
Line Regulation	ΔV _O -V ₁₂	$V_1 = \pm 13 \sim \pm 21V$	l —	21	200	mV
Load Regulation	ΔV _O -l _O	$I_0 = 1 \sim 400 \text{mA}$		44	- 200	mV
Output Noise Voltage	V _{NO}	JISA, $C_{REF}=10\mu F$		18	-	μV
Minimum Output Voltage	Vol	$V_{ISI} = 11.5V, I_O = 400 \text{mA}$	±9.2		l —	v
Reference Voltage.	V _{REF}		1.065	1.115	1.175	v
Temperature Coefficient of]		
Reference Voltage	ΔV _{REF} /ΔT			0.2	_	mV/°

(1) 5V Type (Ta=25°C, $V_{IS2}=10V$, $I_O=200mA$, $\pm V_1=\pm 16V$)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP,	MAX.	UNIT
Output Voltage	Vo		4.7	5.0	5.3	v
Line Regulation	ΔV0-V11	V _{IS2} =6.5~15V		2	20	mV
Line Regulation	ΔV ₀ -V ₁₂	$V_1 = \pm 13 \sim \pm 21V$	l —	9	100	mV
Load Regulation	ΔV _O -I _O	$I_0 = 1 \sim 400 \text{mA}$		9	100	mV
Output Noise Voltage	V _{NO}	JISA, $C_{REF} = 10 \mu F$		9	_	μV
Minimum Output Voltage	Vol	$V_{1S2}=6.5V$, $I_0=400mA$	4.4	l —	_	v
Reference Voltage	V _{REF}		1.065	1.115	1.175	v
Temperature Coefficient of	Ì			ĺ	1	1
Reference Voltage	$\Delta V_{REF}/\Delta T$			0.2	—	mV/℃

⁽note 1) Test circuit: Fig. 1.

⁽note 2) Unless otherwise specified C_{REF} should be $100\mu\,F$.

⁽note 3) Use a transistor having a h_{FE} of 80 \sim 100 in Fig. 1.

NJM2351

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.