TWO OUTPUT HIGH VOLTAGE SWITCHING BEGULATOR

■ GENERAL DESCRIPTION

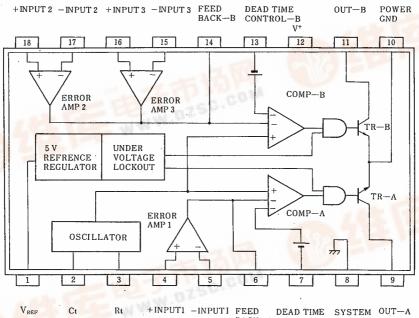
New JRC's high voltage switching regulator, NJM2355, is a monolithic high voltage (50V max) operation integrated circuit consisting of two channel PWM controlers.

The NJM2355 contains an internal 5V reference, free running oscillator, low supply voltage detector, two comparators and three error amplifiers. The error amp 2 or amp 3 is for current limiting in channel B output circuit.

The NJM2355 is suited for DC to DC converter application; step up, step down, positive to negative.

PACKAGE OUTLINE

NJM2355D


■ FEATURES

- Operating Voltage (7.5V~50V)
- Complete PWM Power Control Circuit
- Uncommitted Outputs fov 200-mA Sink or Source
- Output control Selects Single-Ended or Pull Operation
- Internal Cicuitry Prohibits Double Pulse at Either Output
- Variable Dead-Time Provides Control Over Total Range
- Package Outline

DIP18

Bipolar Technology

BLOCK DIAGRAM & PIN CONFIGURATION

+INPUT1 -INPUT1 FEED DEAD TIME SYSTEM OUT-A BACK-A CONTROL-A GND

NJM2355D

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	50	V
Output Current 1	Io1	200	mA
Output Current 2	I02	200	mA
Power Dissipation	Po	700	mW
Operating Temperature Range	Topr	-20~+75	ొ
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(Ta=25℃, V+=15V)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current (1) Operating Current (2)	I _{CC} (1)	V+=15V V+=50V	-	5.7 5.9	7.5 8.0	mA mA

< Reference Section >

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	V_{REF}	I _{REF} =0mA	4.8	5.0	5.2	v
Line Regulation	REGin	V+=7.5V~50V, I _{REF} =0mA	_	12	35	mV
Load Regulation	REG1	I _{REF} =0mA~10mA		6	15	mV
Output Short Current				30 .		mA
Output disable Voltage	V _{nop}	OUT=High Level		4.3	4.6	v
Output disable hysterisis Voltage	ΔV_{nop}	-	_	0.3		v
					}	l

< Oscillator Section >

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Frequency	Fo	$C_1 = 0.01 \mu F, R_1 = 4.3 k\Omega$	25	28	31	kHz

< Dead Interval Adjustment Section >

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.		UNIT
Input Bias Current Maximum Duty (On-time) Input Threshold Voltage	lbdt	DT=0V	—		-10	μΑ
	ΔTon/T	C_t =0.01 μ F, R_t =4.3 $k\Omega$	90		-	%
	V _{th}	Duty Cycle: 0%	2.0	2.5	3.0	V

< PWM Comparator Section >

PARAMETER	SYMBOL	TEST CONDITION	MIN.		MAX.	UNIT
Input Threshold Voltage	V _{the}	Duty Cycle: 0%	_	_	4.5	V

■ ELECTRICAL CHARACTERISTICS

<Error Amplifer Section>

 $(V^+=15V, Ta=25^{\circ}C)$

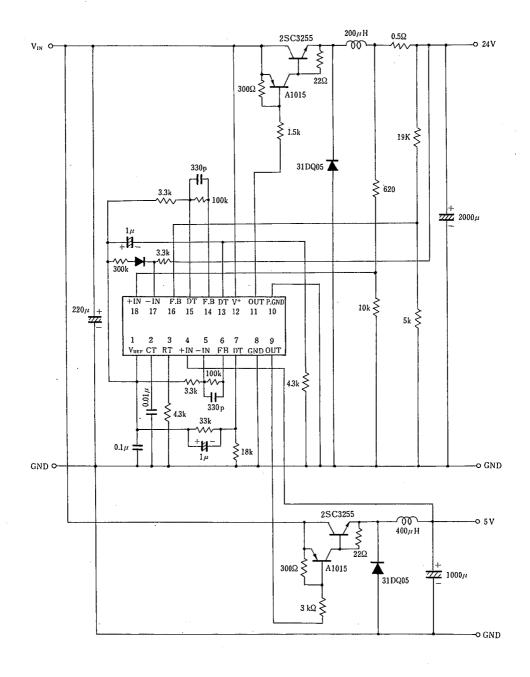
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	FB=2.5V		ı	10	mV
Input Offset Current	Iıo	FB=2.5V	_	5	250	nA
Input Bias Current	. I _B	FB=2.5V	_	0.05	1	μA
Common Mode Input Voltage Range	V _{ICM}	V+=7.5V~50V	0	l —	V _{CC} -2	v
Voltage Gain	Av	FB=0.5V~3.5V	70	100		dB
Band Width	fi	AV=1		800		kHz
Common Mode Rejection Ratio	CMR	V _{CC} =50V	65	80		dB
Output Sink Current	Isink	V _{ID} =5V, FB=0.7V	0.2	0.4	l —	mA
Output Source Current	Isource	V _{ID} =5V, FB=3.5V	— i	-2.5	l —	mA
<i>V</i>				1	1	1

< Output Section >

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Leak Current	I _{CER}	V _{CE} =50V	_	—	100	μA
Saturation Voltage	V _{SAT}	I _O =100mA	_	0.9		V

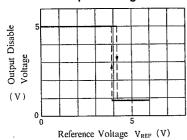
■ TERMINAL EXPLANATION

PIN NO.	PIN SYMBOL	FUNCTION	EQUIVALENT CIRCUIT
1.	V _{REF}	5V Reference Voltage Output	
	s*		V+ V _{REF}
2.	Ct	The oscillator frequency is decided by putting Capacitor, Ct.	
			V _{REF}
			Rt Ct Ct
3.	Rt	The oscillator frequency is decided by putting resistor, Rt.	COMP

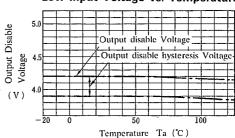

■ TERMINAL EXPLANATION

PIN NO.	PIN SYMBOL	FUNCTION	EQUIVALENT CIRCUIT
4.	+INPUT1	+INPUT of Error Amp i (A Channel)	V+
5.	-INPUTI	-INPUT of Error Amp 1 (A Channel)	18 18 18
16.	+INPUT3	+INPUT of Error Amp 3 (B Channel)	
15.	-INPUT3	-INPUT of Error Amp 3 (B Channel)	
18.	+INPUT2	+INPUT of Error Amp 2 (B Channel)	-INPUT +INPUT
17.	- INPUT2	INPUT of Error Amp 2 (B Channel)	
			GND
6.	FEED BACK-A	OUTPUT of Error Amp 1 (A Channel)	
			AMP10UT VREF
			→ DOMP-A
			FEED BADK-A
			GND
14.	FEED BACK-B	OUTPUT of Error Amp 2 and Error Amp 3 (B Channel)	AMP2OUT AMP3OUT
			VREF
			FEED BACK-B
			GND

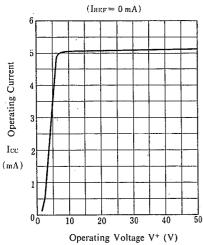
■ TERMINAL EXPLANATION

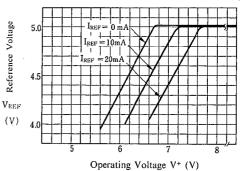

'IN NO.	PIN SYMBOL	FUNCTION	EQUIVALENT CIRCUIT
7.:	DEAD TIME CONTROL-A	The Dead Time Width is adjustable by terminal voltage adjust. (A Channel)	
13.	DEAD TIME CONTROL-B	(B-Channel)	
			VREF ↓⊜
		·	COMP
			DEAD TIME CONTROL
			'
8.	SYSTEM GND	Ground	
9.	OUT-A	Internal Switching Transistor: Open Collector	
11.	ОИТ-В	(A Channel) (B-Channel)	
			_ D OUT
		·	
			GND
			·
10.	POWER GND	Ground Connect to PIN 8.	

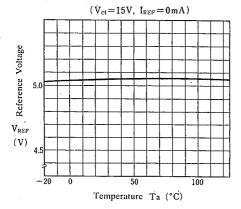
■ TYPICAL APPLICATION

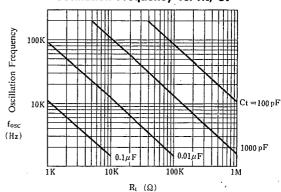


■ TYPICAL CHARACTERISTICS

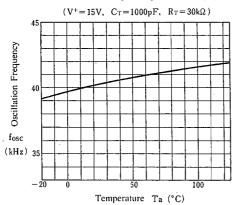

Output Disable Voltage at Low Input Voltage


Output Disable Voltage at Low Input Voltage vs. Temperature

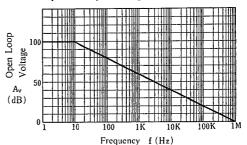

Operating Current vs. Operating Voltage


Reference Voltage vs. Operating Voltage

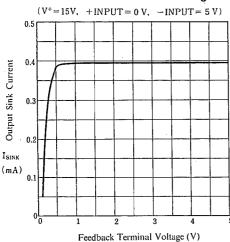
Reference Voltage vs. Temperature

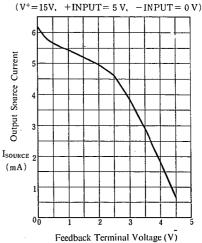


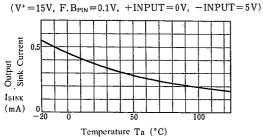
Oscillation Frequency vs. Rt, Ct

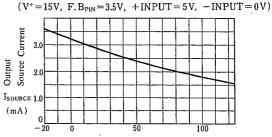


■ TYPICAL CHARACTERISTICS

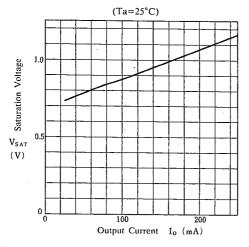

Oscillation Frequency vs. Temperature

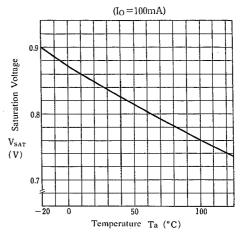

Open Loop Voltage Gain vs. Frequency


< Error Amplifier Section > **Output Sink Current** vs. Feedback Terminal Voltage


< Error Amplifier Section > **Output Source Current** vs. Feedback Terminal Voltage

< Error Amplifier Section > Output Sink Current vs. Temperature


< Error Amplifier Section > **Output Source Current vs. Temperature**


Temperature Ta (°C)

■ TYPICAL CHARACTERISTICS

< Output Section > Saturation Voltage vs. Output Current

< Output Section > Saturation Voltage vs. Temperature

NJM2355

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.