DC/DC CONVERTER CONTROL IC

PIN FUNCTION 1. Cs

2. Es 3. Cr

6. V⁺ 7. S₁

8. Cp

4. GND 5. INV_{1N}

GENERAL DESCRIPTION

查询NJM2360供应商

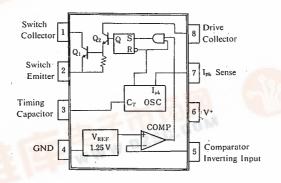
The NJM2360 is a DC to DC converter control IC. Due to the internalization of a high current output switch, 1.5A switching operations are available. The NJM2360 is designed to be incorporated in step-up, step-down and inverting applications with a minimum number of external components. Output current is limited by an external resistor.

FEATURES

JRC

- Operating Voltage (2.5V~40V)
- Low Standby Current
- Current Limiting
- Output Switch Current to 1.5A
- Supply Voltage V⁺
 Output Voltage V_{OR}
- Output voltage Vor
 Oscillator Frequency fosc
- Osemator Prequency
- Package Outline
- Bipolar Technology
- PIN COFIGURATION

2.5~40V


1.25~40V

100Hz~100kHz

DIP8, DMP8

NJM2360D NJM2360M

BLOCK DIAGRAM

PACKAGE OUTLINE

<u>捷多邦,专业PCB打样工厂,24小时加</u> <u>急出**队**JM2360</u>

NJM2360M

6

ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	40	. V
Comparator Input Voltage Range	VIR	-0.3~V+	V.
Power Dissipation		(DIP8) 700	mW
	Po	(DMP8) 600 (note ⁻ l)	mW
Switch Current	Isw	1.5	А
Operating Temperature Range	Topr	-40~+85	°C
Storage Temperature Range	Tsig	-40~+125	Ĉ

(note 1) At on PC board

ELECTRICAL CHARACTERISTICS

• DC Characteristics (V⁺=5V, Ta=25℃)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	Icc	$5V \le V^+ \le 40V$, $C_T = 0.001 \mu F$ $S_I = V^+$, $INV_{IN} > V_{th}$, $E_S = GND$		2.4 .	3.5	mA

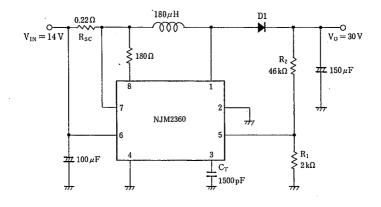
Oscillator

					1	
Charge Current	Ichg	$5V \leq V^+ \leq 40V$	20	35	50	μA
Discharge Current	Idischg	$5V \leq V^+ \leq 40V$	150	200	250	μA
Voltage Swing	Vosc			0.5	_	VP-P
Discharge to Charge Current Ratio	Idischg/Ichg	$S_1 = V^+$		6	-	_
Peak Current Sense Voltage	VIPK(sense)	$I_{chg} = I_{dischg}$	250	300	350	mV

Output Switch (Note 2) .

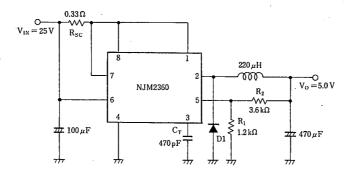
Saturation Voltage 1	V _{CE(sat)}	Darlington Connection ($C_S = C_D$) $I_{SW} = 1.0A$		1.0	1.3	v
Saturation Voltage 2	V _{CE(sat)} 2	$I_{SW} = 1.0A$ $I_{SW} = 1.0A$, $I_{C(driver)} = 50 \text{mA}$ (Forced $\beta = 20$)	_	0.5	0.7	ν
DC Current Gain Collector Off-State Current	h FE	$I_{SW} = 1.0A, V_{CE} = 5.0V$	35	120	—	
Collector Oll-State Current	IC(off)	$V_{CE} = 40V$	_	10	-	nA

Comparator


Threshold Voltage	V_{th}		1.18	1.25	1.32	v
Input Bias Current	I _{1B}	$V_{1N} = 0V$	—	40	400	nA

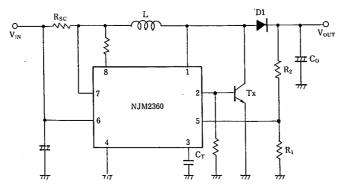
Note 2 : Output switch tests are performed under pulsed conditions to minimize power dissipation.

6

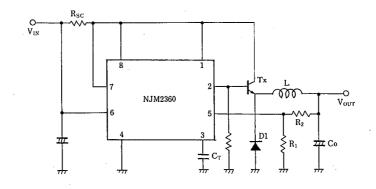

TYPICAL APPLICATIONS

1. Step-Up Converter-

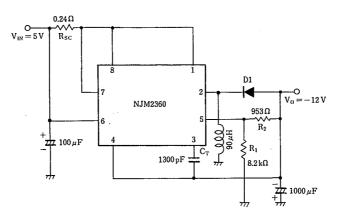
* D1 : SBD(EK14)


2. Step-Down Converter

*D1:SBD(EK14)


TYPICAL APPLICATIONS

3. Step-Up Converter (High Current)



with.

4. Step-Down Converter (High Current)

5. Inverting Converter

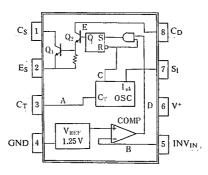
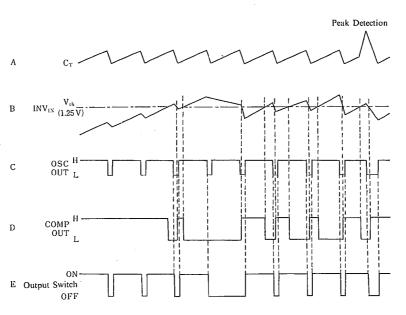
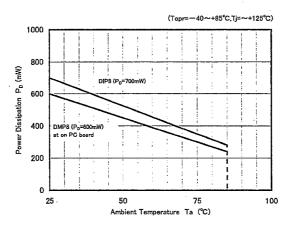
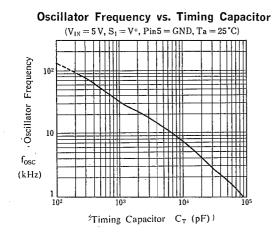
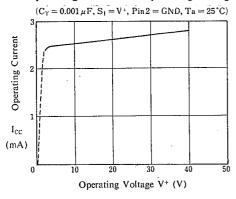


Fig.1 Block Diagram

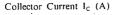



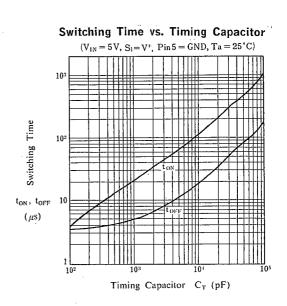

Fig. 2 Timing Chart

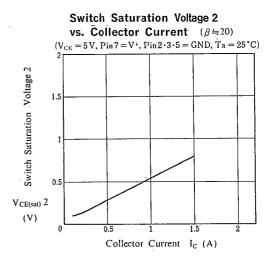
POWER DISSIPATION VS. TEMPERATURE

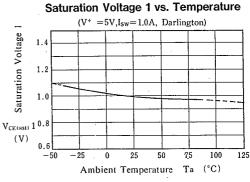


6

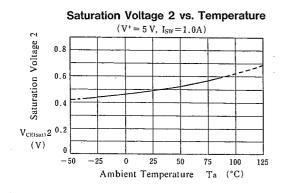

TYPICAL CHARACTERISTICS

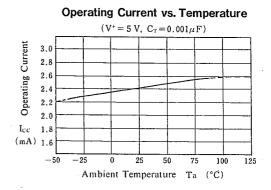


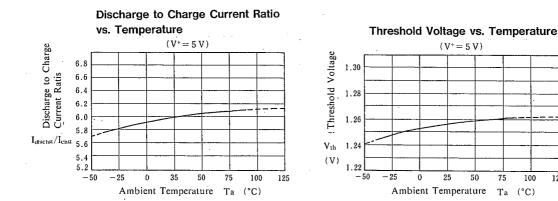

Operating Current vs. Operating Voltage



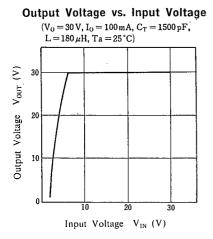
Switch Saturation Voltage 1 vs. : Collector Current (Darlington) $(V_{CE} = 5 V, Pin 7 = V^+, Pin 2 \cdot 3 \cdot 5 = GND, Ta = 25 °C)$ Switch Saturation Voltage 1 1.5 0.5 VCE(sat) 1 (V) n 0.5 1.5 2 1

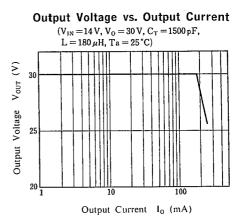




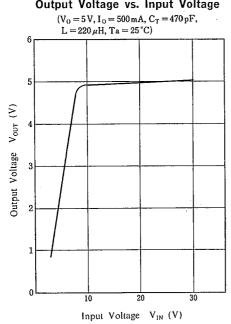


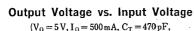
TYPICAL CHARACTERISTICS

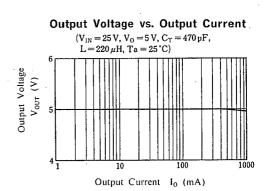



5

125


TYPICAL CHARACTERISTICS (Application)


1. Step-Up Converter



2. Step-Down Converter

6

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

- Now Janan Padia Ca Std -