

M52745SP

BUS CONTROLLED 3-CHANNEL VIDEO PREAMP FOR CRT DISPLAY MONITOR

DESCRIPTION

M52745SP is semiconductor integrated circuit for CRT display monitor.

It includes OSD blanking, OSD mixing, retrace blanking, wide band amplifer, brightness control, uniformity function.

Main/sub contrast and OSD adjust function can be controlled by I^2C bus.

FEATURES

•	Freque	ency band width:	RGB	200MHz (at -3dB)
	•	,		80MHź
	Input	:RGB		0.7VP-P (typ.)
		OSD		3VP-P minimum (positive)
		BLK (for OSD))	.3VP-P minimum (positive)
		Retrace BLK		.3VP-P minimum (positive)
	Output	:RGB		5.5V _{P-P} (max.)
		OSD		5V _{P-P} (max.)

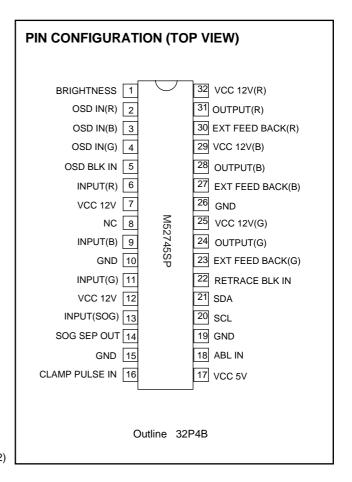
- Main contrast and sub contrast can be controlled by I2C bus.
- Include internal and external pedestal clamp circuit

STRUCTURE

Bipolar silicon monolithic IC

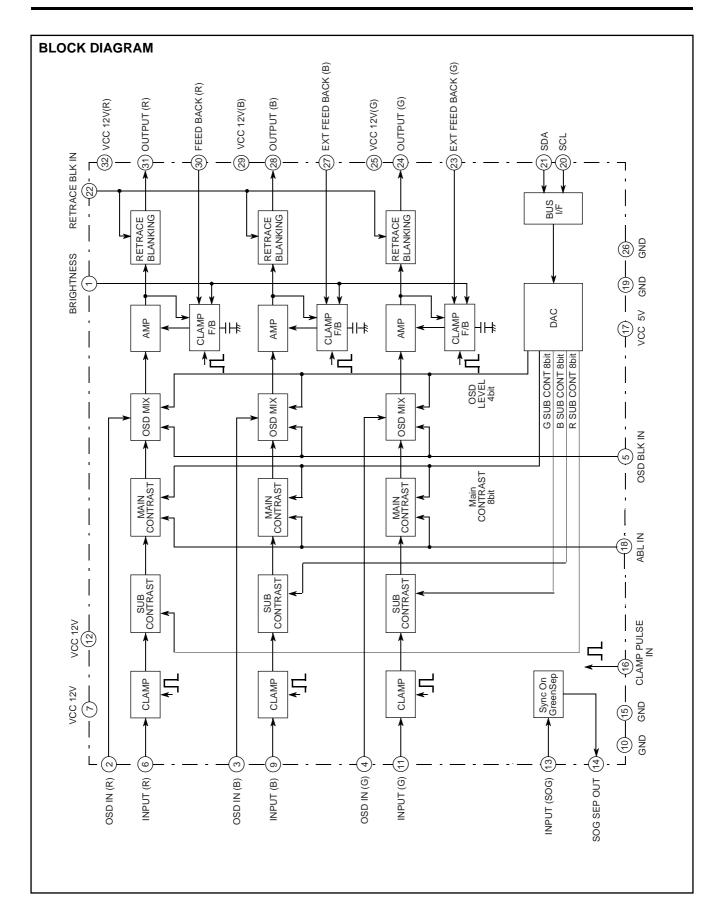
APPLICATION

CRT display monitor


RECOMMENDED OPERATING CONDITION

Supply voltage range......11.5 to 12.5V (V7, V12, V25, V29,V32) 4.5 to 5.5V (V17)

Rated supply voltage......12.0V (V7, V12, V25, V29,V32) 5.0V (V17)


MAJOR SPECIFICATION

Bus controlled 3ch video pre-amp with OSD mixing function and retrace blanking function

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Symbol	Parameter	Ratings	Unit
Vcc	Supply voltage	13.0	V
Pd	Power dissipation	2358	mW
Topr	Ambient temperature	-20 to +85	°C
Tstg	Storage temperature	-40 to +150	°C
Vopr	Recommended supply	12.0	V
Vopr'	Voltage range	10.5 to 12.5	V

ELECTRICAL CHARACTERISTICS (Vcc=12V, 5V, Ta=25°C, unless otherwise noted)

		Test				Input			C ⁻ volt	ΓL age				E	3U	s c	CTI	_ (F	l)			Limits	;	
Symbol	Parameter	point (s)	6,9,11 RGB in	5 OSD BLK	2,3,4 OSD in	16 CP in	22 ReT BLK	13 SOG in	1 Bri- ght	18 ABL	00H Main cont	Sub	t con	b Su	nt A	SD II	5H NT XT				Min.	Тур.	Мах.	Unit
ICC1	Circuit current1	la	а	а	а	b SG5	а	а	4.0	5.0	FFH 255	FFH 255	H FFH	H FF	H 00	он о	0 0				-	110	130	mA
ICC2	Circuit current2	Ів	а	а	а	b SG5	а	а	4.0	5.0											1	18	25	mA
Vomax	Output dynamic range	OUT	b SG2	а	а	b SG5	а	а	Vari able	5.0	V										6.0	8.0	ı	VP-P
Vimax	Maximum input	IN OUT	b SG2 Variable	а	а	b SG5	а	а	2.0	5.0	64H 100										1.6	1	1	Vp-p
Gv	Maximum gain	OUT	b SG1	а	а	b SG5	а	а	2.0	5.0	FFH 255										17.1	17.7	19.4	dB
Gv	Relative max- imum gain	-	-	-	-	-	-	-	-	ı	-										0.8	1.0	1.2	ı
Vc1	Main contrast control characteristics1	OUT	b SG1	а	а	b SG5	а	а	2.0	5.0	C8H 200										15.0	16.5	18.0	dB
Vc1	Main contrast control relative characteristics1	-	-	-	·	-	-	-	-	-	-										0.8	1.0	1.2	-
Vc2	Main contrast control characteristics2	OUT	b SG1	а	а	b SG5	а	а	2.0	5.0	64H 100										9.0	10.5	12.0	dB
Vc2	Main contrast control relative characteristics2	-	-	-	-	-	-	-	-	-	-										0.8	1.0	1.2	-
Vсз	Main contrast control characteristics3	OUT	b SG1	а	а	b SG5	а	а	2.0	5.0	14H 20										0.1	0.3	0.5	VP-P
Vсз	Main contrast control relative characteristics3	-	-	-	-	-	-	-	-	1	-				,						0.8	1.0	1.2	1
Vsc ₁	Sub contrast control characteristics1	OUT	b SG1	а	а	b SG5	а	а	2.0	5.0	FFH 255	C8F 200	H C8H	H C8	ОН						15.5	16.5	18.0	dB
Vsc ₁	Sub contrast control relative characteristics1	-	-	-	-	-	-	-	-	1	-	-	-	-							0.8	1.0	1.2	1
Vsc2	Sub contrast control characteristics2	OUT	b SG1	а	а	b SG5	а	а	2.0	5.0	FFH 255	64H 100	1 64H 0 100	H 64I							9.5	11.0	12.5	dB
Vsc ₂	Sub contrast control relative characteristics2	-	-	-	-	-	-	-	-	-	-	-	-	-							0.8	1.0	1.2	-
Vsc3	Sub contrast control characteristics3	OUT	b SG1	а	а	b SG5	а	а	2.0	5.0	FFH 255	14H 20	1 14H 20	H 14I							0	0.2	0.5	VP-P
Vsc3	Sub contrast control relative characteristics3	-	-	-	ı	-	-	-	-	-	-	-	-	-							0.8	1.0	1.2	-

ELECTRICAL CHARACTERISTICS (cont.)

	_	Test				Input				TL age					BU	JS (СТ	L (I	H)			Limits	;	
Symbol	Parameter	point (s)	6,9,11 RGB in	5 OSD BLK	2,3,4 OSD in	16 CP in	22 ReT BLK	13 SOG in	1 Bri- ght	18 ABL	00H Main cont	Sub	t cor	nt co	ub C		05H INT ENT				Min.	Тур.	Max.	Unit
VMSC	Main/sub contrast control characteristics	OUT	b SG1	а	а	b SG5	а	а	2.0	5.0	C8H 200	C8F 200	H C8	H C8	BH 00						3.4	4.0	4.6	VP-P
VMSC	Main/sub contrast control relative characteristics	-	-	-	-	-	-	-	-	-	-	-	-	-							0.8	1.0	1.2	-
ABL1	ABL control characteristics1	OUT	b SG1	а	а	b SG5	а	а	2.0	4.0	FFH 255	FFH 255	H FF								4.1	4.9	5.7	VP-P
ABL1	ABL control relative characteristics1	-	-	1	1	-	-	-	-	-											0.8	1.0	1.2	-
ABL2	ABL control characteristics2	OUT	b SG1	а	а	b SG5	а	а	2.0	2.0											1.5	2.0	2.5	VP-P
ABL2	ABL control relative characteristics2	-	-	-	-	-	-	-	-	-											0.8	1.0	1.2	-
V _B 1	Brightness control characteristics1	OUT	а	а	а	b SG5	а	а	4.0	5.0											3.3	3.7	4.1	V
V _B 1	Brightness control relative characteristics1	-	-	1	ı	-	-	-	-	-											-0.3	0	0.3	V
VB2	Brightness control characteristics2	OUT	а	а	а	b SG5	а	а	2.0	5.0											1.5	1.8	2.1	V
VB2	Brightness control relative characteristics2	-	-	-	-	-	-	-	-	-											-0.3	0	0.3	V
Vв3	Brightness control characteristics3	OUT	а	а	а	b SG5	а	а	1.0	5.0											0.7	0.9	1.1	V
V _В 3	Brightness control relative characteristics3	-	-	-	-	-	-	-	-	-											-0.3	0	0.3	V
Fc1	Frequency characteristics1 (f=50MHz)	OUT	b SG3	а	а	a 5V	а	а	Vari able		Va ria ble										-2.0	0	2.5	dB
Fc1	Frequency relative characteristics1 (f=50MHz)	-	-	1	1	-	-	-	-	-	-	V		/ \	,	V	V				-1.0	0	1.0	dB
Fc1'	Frequency characteristics1 (f=200MHz)	OUT	b SG3	а	а	a 5V	а	а	Vari able	5.0	Va ria ble	25F	H FFI	H FF	FH 0	0 0	00H 0				-3.0	0	3.0	dB
Fc1'	Frequency relative characteristics1 (f=200MHz)	-	-	ı	1	-	-	-													-1.0	0	1.0	dB
FC2	Frequency characteristics2 (f=200MHz)	OUT	b SG3	а	а	a 5V	а	а	Vari able												-3.0	3.0	5.0	dB
Fc2	Frequency relative characteristics2 (f=200MHz)	-	-	-	-	-	-	-	-	-	J										-1.0	0	1.0	dB
C.T.1	Crosstalk 1 (f=50MHz)	OUT(29) OUT(32)	2bSG3 6a 11a	а	а	a 5V	а	а	Vari able	5.0	FFH 255										-	-25	-20	dB
C.T.1'	Crosstalk 1 (f=200MHz)	OUT(29) OUT(32)	2bSG3 6a 11a	а	а	a 5V	а	а	Vari able	5.0											-	-20	-15	dB
C.T.2	Crosstalk 2 (f=50MHz)	OUT(29) OUT(35)	2a 6bSG3 11a	а	а	a 5V	а	а	Vari able	5.0											-	-25	-20	dB
C.T.2'	Crosstalk 2 (f=200MHz)	OUT(29) OUT(35)	2a 6bSG3 11a	а	а	a 5V	а	а	Vari able	5.0											-	-20	-15	dB
C.T.3	Crosstalk 3 (f=50MHz)	OUT(32) OUT(35)	11bSG3	а	а	a 5V	а	а	Vari able	5.0											-	-25	-20	dB
C.T.3'	Crosstalk 3 (f=200MHz)	OUT(32) OUT(35)	2a 6a 11bSG3	а	а	a 5V	а	а	Vari able	5.0	$ $										-	-20	-15	dB

ELECTRICAL CHARACTERISTICS (cont.)

		Test				Input				TL age					В	US	С	ΓL (H)			Limits		
Symbol	Parameter	point (s)	6,9,11 RGB in	5 OSD BLK	2,3,4 OSD in	16 CP in	22 ReT BLK	13 SOG in	1 Bri- ght	18 ABL	00H Main cont	Su	b S	ub	O3H Sub cont B	04H OSD Adj	05H INT ENT	1			Min.	Тур.	Max.	Unit
Tr	Pulse characteristics1 (4V _{P-P})	OUT	b SG1	а	а	b SG5	а	а	Vari able	5.0	Va ria ble										-	2.8	3.6	ns
Tr	Relative pulse characteristics1	OUT	b SG1	а	а	b SG5	а	а	Vari able	5.0	Vari able										-0.8	0	0.8	ns
Tf	Pulse characteristics2 (4V _{P-P})	OUT	b SG1	а	а	b SG5	а	а	Vari able	5.0	Va ria ble										-	2.8	3.6	ns
Tf	Relative pulse characteristics2	OUT	b SG1	а	а	b SG5	а	а	Vari able	5.0	Vari able										-0.8	0	0.8	ns
VthCP	Clamp pulse threshold voltage	OUT	b SG1	а	а	b SG5 Variable	а	а	2.0	5.0	FFH 255										1.0	1.5	2.0	V
WCP	Clamp pulse minimum width	OUT	b SG1	а	а	b SG5 Variable	а	а	2.0	5.0											0.2	-	1	μs
P _{DCH}	Pedestal voltage temperature characteristics1	OUT	b SG1	а	а	b SG5	а	а	2.0	5.0											-0.15	0	0.15	V
PDCL	Pedestal voltage temperature characteristics2	OUT	b SG1	а	а	b SG5	а	а	2.0	5.0											-0.15	0	0.15	V
OTr	OSD pulse characteristics1	OUT	а	а	b SG6	b SG5	а	а	2.0	5.0						\					-	3.0	6.0	ns
OTf	OSD pulse characteristics2	OUT	а	а	b SG6	b SG5	а	а	2.0	5.0						08H 8					-	3.0	6.0	ns
Oaj1	OSD adjust control characteristics1	OUT	а	b SG6	b SG6	b SG5	а	а	2.0	5.0						0FH 15					4.6	5.4	6.2	V _{P-P}
Oaj1	OSD adjust control relative characteristics1	-	-	-	-	-	-	-	-	-						-					0.8	1.0	1.2	-
Oaj2	OSD adjust control characteristics2	OUT	а	b SG6	b SG6	b SG5	а	а	2.0	5.0						08H 8					3.4	3.9	4.4	VP-P
Oaj2	OSD adjust control relative characteristics2	-	-	1	1	-	-	-	-	1						-					0.8	1.0	1.2	-
OBLK	OSD adjust control characteristics3	OUT	а	b SG6	а	b SG5	а	а	2.0	5.0						00H 0					0	-0.1	-0.3	VP-P
OBLK	OSD adjust control relative characteristics3	-	-	-	-	-	-	-	-	-						-					-0.15	0	0.15	Vp-p
VthOSD1	OSD input threshold voltage1	OUT	а	b SG6	b SG6 Variable	b SG5	а	а	2.0	5.0						08H 8					3.1	3.5	3.9	V
VthOSD2	OSD input threshold voltage2	OUT	а	b SG6	b SG6 Variable	b SG5	а	а	2.0	5.0											1.5	2.0	2.5	٧
VthBLK	OSD BLK input threshold voltage	OUT	b SG1	b SG6 Variable	а	b SG5	а	а	2.0	5.0						00H 0					2.2	2.7	3.2	V
Ohaj1	OSD half adjust control characteristics1	OUT	а	b SG6	b SG6 3V	b SG5	а	а	2.0	5.0						00H 15					3.2	3.8	4.4	V
Ohaj2	OSD half adjust control characteristics2	OUT	а	b SG6	b sce	b SG5	а	а	2.0	5.0						08H 8	V				2.3	2.7	3.1	V
VthRET	Retrace BLK input threshold voltage	OUT	а	а	а	b SG5	b SG7 Variable	а	2.0	5.0		V	. ,		V	00H 0	08H 8				1.0	1.5	2.0	V
SS-NV	SOG input maximum noise voltage	SonG IN Sync OUT	а	а	а	а	а	b SG4 Variable	2.0	5.0											-	-	0.03	VP-P
SS-SV	SOG minimum input voltage	SonG IN Sync OUT	а	а	а	а	а	b SG4 Variable	2.0	5.0											0.2	-	-	VP-P
VSH	Sync output hi level	Sync OUT	а	а	а	а	а	b SG4	 2.0	5.0											4.5	4.9	5.0	V

EXECTRICAL CHARACTERISTICS (cont.)

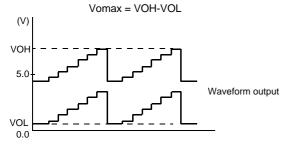
TDS-F		Test				Input			_	TL age				В	US	СТ	L (F	l)			Limits	1	
TDS-R	Parameter	point (s)	6,9,11 RGB in	5 OSD BLK	2,3,4 OSD in	16 CP in	22 ReT BLK		1 Bri- ght	18 ABL	Main		Sub	03H Sub cont B	OSD	INT				Min.	Тур.	Max.	Unit
Iccps	Sync output lo level	Sync OUT	а	а	а	а	а	b SG4	2.0	5.0										0	0.3	0.6	V
SKV	Sync output delay time1	Sync OUT	а	а	а	а	а	b SG4	2.0	5.0										0	60	90	ns
	Sync output delay time2	Sync OUT	а	а	а	а	а	b SG4	2.0	5.0										0	60	90	ns
	Power save circult current	lps	а	а	а	b SG5	а	а	4.0	5.0	FFH 255	FFH 255	FFH 255	FFH 255	00H 0	00H 0				-	22	30	mA
	Spot killer voltage	12V system voltage	b SG1	а	а	b SG5	а	а	2.0	5.0	FFH 255	FFH 255	FFH 255	FFH 255	00H 0	00H 0				9.4	10.0	10.4	V

ELECTRICAL CHARACTERISTICS TEST METHOD

Icc1 Circuit current1

Measuring conditions are as listed in supplementary Table. Measured with a current meter at test point IA.

ICC2 Circuit current2


Measuring conditions are as listed in supplementary Table. Measured with a current meter at test point IB.

Vomax Output dynamic range

Decrease V1 gradually, and measure the voltage when the waveform output is distorted. The voltage is called VOL.

Next, increase V1 gradually, and measure the voltage when the top of waveform output is distorted. The voltage is called VOH.

Voltage Vomax is calculated by the equation below:

Vimax Maximum input

Increase the input signal (SG2) amplitude gradually, starting from 700mVP-P. Measure the amplitude of the input signal when the output signal starts becoming distorted.

Gv Maximum gain

Input SG1, and read the amplitude output at OUT (24, 28, 31). The amplitude is called VOUT (24, 28, 31). Maximum gain GV is calculated by the equation below:

$$Gv=20Log \frac{VOUT}{0.7}$$
 (dB)

Gv Relative maximum gain

Relative maximum gain DGv is calculated by the equation bellow:

Vc1 Main contrast control characteristics1

Measuring the amplitude output at OUT (24, 28, 31). The measured value is called VOUT (24, 28, 31). Main contrast control characterics Vc1 is calculated by the equation bellow:

$$Vc1=20Log \frac{VOUT}{0.7} (dB)$$

Vc1 Main contrast control relative characteristics1

Relative characteristics Vc1 is calculated by the equation bellow:

Vc2 Main contrast control characteristics2

Measuring condition and procedure are the same as described in Vc1.

Vc₂ Main contrast control relative characteristics2

Measuring condition and procedure are the same as described in $\ensuremath{\text{Vc1}}.$

Vc3 Main contrast control characteristics3

Measuring the amplitude output at OUT (24, 28, 31).

The measured value is called VOUT (24, 28, 31).

Vc3 Main contrast control relative characteristics3

Measuring condition and procedure are the same as described in Vc1.

Vsc1 Sub contrast control characteristics1

Measure the amplitude output at OUT (24,28,31). The measured value is called VOUT (24, 28, 31). Sub contrast control characteristics Vsc1 is calculated by the equation below:

$$Vsc1=20Log\frac{VOUT}{0.7} (dB)$$

Vsc₁ Sub contrast control relative characteristics1

Relative characteristics Vsc1 is calculated by the equation below: Vsc1=VOUT (24)/VOUT (28),

VOUT (28)/VOUT (26), VOUT (28)/VOUT (31), VOUT (31)/VOUT (24).

Vsc₂ Sub contrast control characteristics₂

Measuring condition and procedure are the same as described in Vsc1.

Vsc₂ Sub contrast control relative characteristics₂

Measuring condition and procedure are the same as described in Vsc1.

Vsc3 Sub contrast control characteristics3

Measuring the amplitude output at OUT (24,28,31).

The measured value is called VOUT (24, 28, 31).

Vsc3 Sub contrast control relative characteristics3

Measuring condition and procedure are the same as described in Vsc1.

VMSC Main/sub contrast control characteristics

Measure the amplitude output at OUT (24, 28, 31). The measured value is called VOUT (24, 28, 31). Main/Sub contrast control characteristics VMSC is calculated by the equation below:

VMSC =20Log
$$\frac{\text{VOUT}}{0.7}$$
 (dB)

VMSC Main/sub contrast control relative characteristics

Relative characteristics VMSC is calculated by the equation below:

ABL1 ABL control characteristics1

ABL2 ABL control characteristics2

Measure the amplitude output at OUT (24,28,31). The measured value is called VOUT (24,28,31), and is treated as ABL1.

ABL1 ABL control relative characteristics1

Relative characteristics ABL1 is calculated by the equation below:

ABL1= VOUT (24)/VOUT (28), VOUT (28)/VOUT (31), VOUT (31)/VOUT (24)

Measuring condition and procedure are the same as described in ABL1.

ABL2 ABL control relative characteristics2

Measuring condition and procedure are the same as described in ABI 1.

VB1 Brightness control characteristics1

Measure the DC voltage at OUT (24, 28, 31) with a voltmeter. The measured value is called VOUT (24, 28, 31), and is treated as V B1.

V_{B1} Brightness control relative characteristics1

Relative characteristics V_{B1} is calculated by the difference in the output between the channels.

VB1= VOUT (24)-VOUT (28), VOUT (28)-VOUT (31), VOUT (31)-VOUT (24)

VB2 Brightness control characteristics2

Measuring condition and procedure are the same as described in V_{R1}.

VB2 Brightness control relative characteristics2

Measuring condition and procedure are the same as described in VB1.

VB3 Brightness control characteristics3

Measuring condition and procedure are the same as described in V_{B1} .

VB3 Brightness control relative characteristics3

Measuring condition and procedure are the same as described in V_{B1}.

Fc1 Frequency characteristics1 (f=50MHz)

First, SG3 to 1MHz is as input signal. Input a resister that is about 2k to offer the voltage at input pins (6, 9, 11) in order that the bottom of input signal is 2.5V. Control the main contrast in order that the amplitude of sine wave output is 4.0VP-P. Control the brightness in order that the bottom of sine wave output is 2.0VP-P. By the same way, measure the output amplitude when SG3 to 50MHz is as input signal. The measured value is called VOUT (24, 28, 31). Frequency characteristics Fc1 (24, 28, 31) is calculated by the equation below:

Fc1 Frequency relative characteristics1 (f=50MHz)

Relative characteristics Fc1 is calculated by the difference in the output between the channels.

Fc1' Frequency characteristics1 (f=150MHz)

Measuring condition and procedure are the same as described in table, expect SG3 to 150MHz.

Fc1' Frequency relative characteristics1 (f=150MHz)

Relative characteristics Fc1' is calculated by the difference in the output between the channels.

Fc2 Frequency characteristics2 (f=150MHz)

SG3 to 1MHz is as input signal. Control the main contrast in order that the amplitude of sine wave output is 1.0VP-P. By the same way, measure the output amplitude when SG3 to 150MHz is as input signal.

The measured value is called VOUT (24, 28, 31). Frequency characteristics Fc2 (24, 28, 31) is calculated by the equation below:

Fc2 Frequency relative characteristics2 (f=150MHz)

Relative characteristics Fc2 is calculated by the difference in the output between the channels.

C.T.1 Crosstalk1 (f=50MHz)

Input SG3 (50MHz) to pin2 only, and then measure the waveform amplitude output at OUT (24, 28, 31). The measured value is called VOUT (24, 28, 31). Crosstalk C.T.1 is calculated by the equation below:

C.T.1' Crosstalk1 (f=150MHz)

Measuring condition and procedure are the same as described in C.T.1, expect SG3 to 150MHz.

C.T.2 Crosstalk2 (f=50MHz)

Input SG3 (50MHz) to pin6 only, and then measure the waveform amplitude output at OUT (24, 28, 31). The measured value is called VOUT (24, 28, 31). Crosstalk C.T.2 is calculated by the equation below:

C.T.2' Crosstalk2 (f=150MHz)

Measuring condition and procedure are the same as described in C.T.2, expect SG3 to 150MHz.

C.T.3 Crosstalk3 (f=50MHz)

Input SG3 (50MHz) to pin11 only, and then measure the waveform amplitude output at OUT (24, 28, 31). The measured value is called VOUT (24, 28, 31). Crosstalk C.T.3 is calculated by the equation below:

C.T.3' Crosstalk3 (f=150MHz)

Measuring condition and procedure are the same as described in C.T.3, expect SG3 to 150MHz.

Tr Pulse characteristics1 (4VP-P)

Control the main contrast (00H) in order that the amplitude of output signal is 4.0VP-P.

Control the brightness (V1) in order that the Black level of output signal is 2.0V.

Measure the time needed for the input pulse to rise from 10% to 90% (Tr1) and for the output pulse to rise from 10% to 90% (Tr2) with an active probe.

Pulse characteristics Tr is calculated by the equations below :

$$Tr = \sqrt{(Tr2)^2 - (Tr1)^2}$$

Tr Relative pulse characteristics1

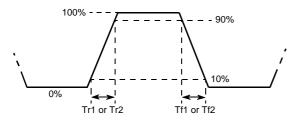
Relative characteristics Tr is calculated by the difference in the output between the channels.

Tf Pulse characteristics2 (4VP-P)

Measure the time needed for the input pulse to fall from 90% to 10% (Tf1) and for the output pulse to fall from 90% to 10% (Tf2) with an active prove.

Pulse characteristics Tf is calculated by the equations below:

$$Tf = \sqrt{[(Tf2)^2 - (Tf1)^2]}$$



M52745SP

BUS CONTROLLED 3-CHANNEL VIDEO PREAMP FOR CRT DISPLAY MONITOR

Tf Relative pulse characteristics2

Relative characteristics Tf is calculated by the difference in the output between the channels.

VthCP Clamp pulse threshold voltage

Turn down the SG5 input level gradually from 5.0VP-P, monitoring the waveform output.

Measure the top level of input SG5 at when the output pedestal level is start to going down or unstable.

WCP Clamp pulse minimum width

Decrease the SG5 pulse width gradually from $0.5\,\mu s$, monitoring the output. Measure the input SG5 pulse width (a point of 1.5V) when the output pedestal voltage turm decrease with unstable.

PDCH Pedestal voltage temperature characteristic1

Measure the pedestal voltage at 25°C. The measured value is called PDC1.

Measure the pedestal voltage at temperature of -20°C. The measured value is called PDC2.

Pedestal voltage temperature characteristics 1 is calculated by the equation below:

PDCH =PDC1-PDC2

PDCH Pedestal voltage temperature characteristic2

Measure the pedestal voltage at 25°C. The measured value is called PDC1.

Measure the pedestal voltage at temperature of 75°C. The measured value is called PDC3.

Pedestal voltage temperature characteristics 2 is calculated by the equation below:

PDCH =PDC1-PDC3

OTr OSD pulse characteristics1

Measure the time needed for the output pulse to rise from 10% to 90% (OTR) with an active prove.

OTf OSD pulse characteristics2

Measure the time needed for the output pulse to fall from 90% to 10% (OTF) with an active prove.

Oaj1 OSD adjust control characteristics1

Measure the amplitude output at OUT (24, 28, 31). The measured value is called VOUT (24, 28, 31), and is treated as Oaj1.

Oaj1 OSD adjust control relative characteristics1

Relative characteristics Oaj1 is calculated by the equation below:

Oaj1=VOUT (24)/VOUT (28), VOUT (28)/VOUT (31), VOUT (31)/VOUT (24)

Oaj2 OSD adjust control characteristics2

Measuring condition and procedure are the same as described in Oaj1.

Oaj2 OSD adjust control relative characteristics2

Measuring condition and procedure are the same as described in Oaj1.

OBLK OSD adjust control characteristics3

Measuring condition and procedure are the same as described in Oaj1.

OBLK OSD adjust control relative characteristics3

Measuring condition and procedure are the same as described in Oaj1.

VthOSD OSD input threshold voltage

Reduce the SG6 input level gradually, monitoring output. Measure the SG6 level when the output reaches 0V. The measured value is called VthOSD.

VthBLK OSD BLK input threshold voltage

Confirm that output signal is being blanked by the SG6 at the time. Monitoring to output signal, decreasing the level of SG6. Measure the top level of SG6 when the blanking period is disappeared. The measured value is called VthBLK.

VthRET Retrace BLK input threshold voltage

Confirm that output signal is being blanked by the SG7 at the time. Monitoring to output signal, decreasing the level of SG7. Measure the top level of SG7 when the blanking period is disappeared. The measured value is called VthRET.

SS-NV SOG input maximum noise voltage

The sync's amplitude of SG4 be changed all white into all black, increase from 0VP-P to 0.02VP-P. No pulse output permitted.

SS-SV SOG minimum input voltage

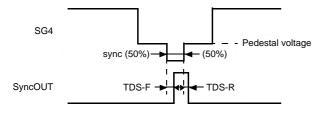
The sync's amplitude of SG4 be changed all white or all black, decrease from 0.3VP-P to 0.2VP-P. Confirm no malfunction produced by noise.

VSH Sync output hi level

Measure the high voltage at SyncOUT. The measured value is treated as VSH.

VSL Sync output lo level

Measure the low voltage at SyncOUT. The measured value is treated as VSL.


TDS-F Sync output delay time1

SyncOUT becomes High with sync part of SG4.

Measure the time needed for the front edge of SG4 sync to fall from 50% and for SyncOUT to rise from 50% with an active prove. The measured value is treated as TDS-F, less than 90nsec.

TDS-R Sync output delay time2

Measure the time needed for the rear edge of SG4 sync to rise from 50% and for SyncOUT to fall from 50% with an active prove. The measured value is treated as TDS-R, less than 90nsec.

VOH D/A H output voltage

Measure the DC voltage at D/AOUT. The measured value is treated as VOH.

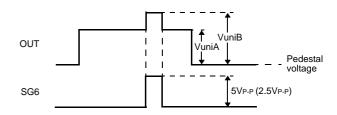
VOL D/A L output voltage

Measure the DC voltage at D/AOUT. The measured value is treated as VOL.

IAO D/A output current range

Electric current flow from the output of D/AOUT must be less than 1.0mA.

Electric current flow into the output of D/AOUT must be more than $0.1 \mathrm{mA}$.


DNL D/A nonlinearity

The difference of differential non-linearity of D/AOUT must be less than ±1.0LSB.

UNI1 Uniformity characteristics1 UNI1 Uniformity characteristics2

VuniA is amplitude output at OUT (24, 28, 31), when SG6 is low voltage. VuniB is amplitude output at OUT (24, 28, 31), when SG6 is high voltage.

moduration ratio UNI (UNI2) is calculated by the equation below; UNI1 (UNI2)=100 • (VuniB/VuniA-1) (%)

I²C-BUS PROTOCOL

(1) Slave address

D7	D6	D5	D4	D3	D2	D1	R/W	
1	0	0	0	1	0	0	0	=88H

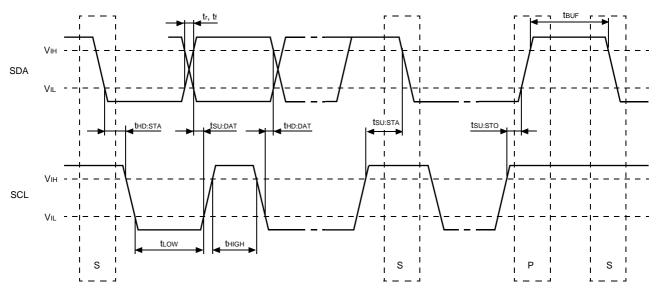
(2) Slave receiver format

	S	SLAVE ADDRESS	Α	SUB ADDRESS	А	DATA BYTE	Α	Р
			†					
STA	RT cond	lition a	cknowled	dge			S1	ΓOP conditi

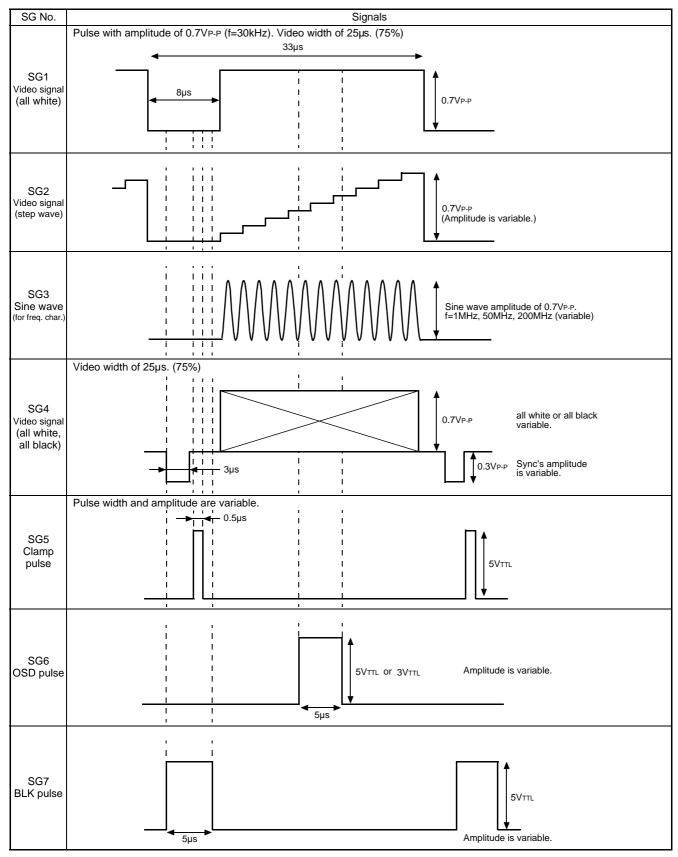
(3) Sub address byte and data byte format

Function	bit	sub		Data	byte (top	:byte form	at under:	start cond	ition)	
Function	Dit	add.	D7	D6	D5	D4	D3	D2	D1	D0
Main contrast	8	00H	A07	A06	A05	A04	A03	A02	A01	A00
Main contrast	0	ООП	0	1	0	0	0	0	0	0
Sub contrast R	8	01H	A17	A16	A15	A14	A13	A12	A11	A10
Sub contrast R	0	UIH	1	0	0	0	0	0	0	0
Sub contrast G	8	02H	A27	A26	A25	A24	A23	A22	A21	A20
Sub contrast G	0	UZH	1	0	0	0	0	0	0	0
Sub contrast B	8	03H	A37	A36	A35	A34	A33	A32	A31	A30
Sub contrast B	0	USFI	1	0	0	0	0	0	0	0
OSD level	4	04H	-	-	-	-	A43	A42	A41	A40
O3D level	4	0411	0	0	0	0	1	0	0	0
Pedestal clamp INT/EXT SW	1	05H	-	-	-	-	-	-	-	A50
i edesiai ciamp iivi/LX1 3W	'	0311	0	0	0	0	0	0	0	0

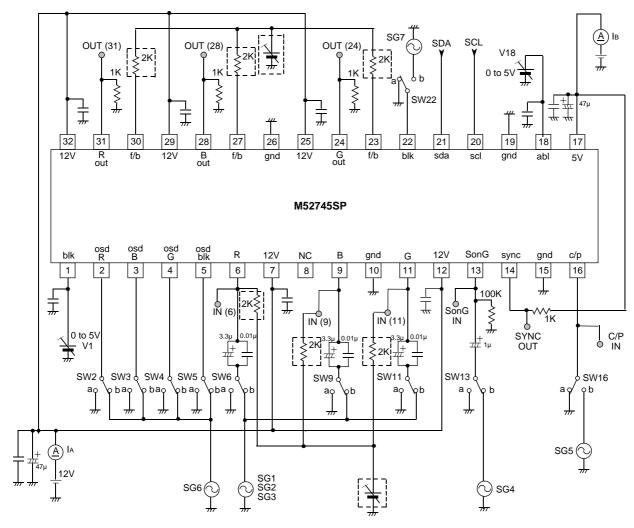
Notes) pedestal level INT/EXT SW


0 → INT 1 → EXT

TIMING REQUIREMENT OF I²C

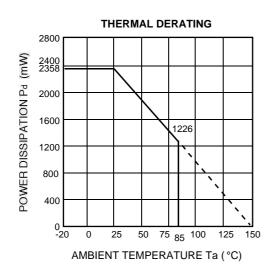

Symbol	Parameter	Min.	Max.	Unit
VIL	Input voltage LOW	-0.5	1.5	V
VIH	Input voltage HIGH	3.0	5.5	V
fscl	SCL clock frequency	0	100	kHz
tBUF	Time the bus must be free before a new transmission can start	4.7	-	μs
thd:sta	Hold time start condition. After this period the first clock pulse is generated	4.0	-	μs
tLOW	The LOW period of the clock	4.7	-	μs
thigh	The HIGH period of the clock	4.0	-	μs
tsu:sta	Set up time for start condition (Only relevant for a repeated start condition)	4.7	-	μs
thd:dat	Hold time for I ² C devices	0	-	μs
tsu:dat	Set-up time DATA	250	-	ns
tr	Rise time of both SDA and SCL	-	1000	ns
tf	Fall time of both SDA and SCL	-	300	ns
tsu:sto	Set-up time for stop condition	4.0	-	μs

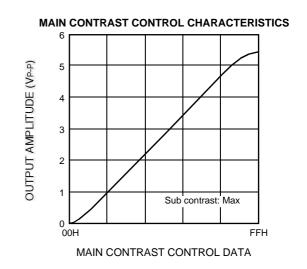
TIMING DIAGRAM

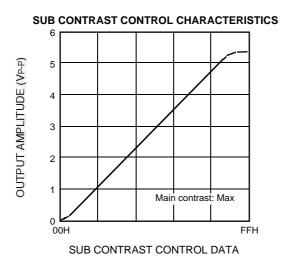


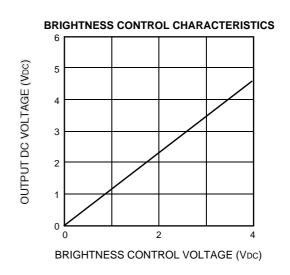
INPUT SIGNAL

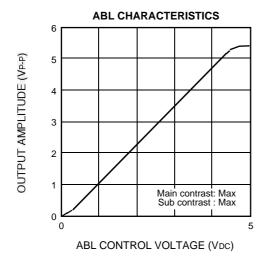
TEST CIRCUIT

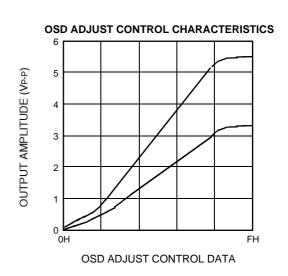

O: MEASURE POINT


* Capacitor : 0.01µF (unless otherwise specified.)


Units Resistance : Capacitance : F

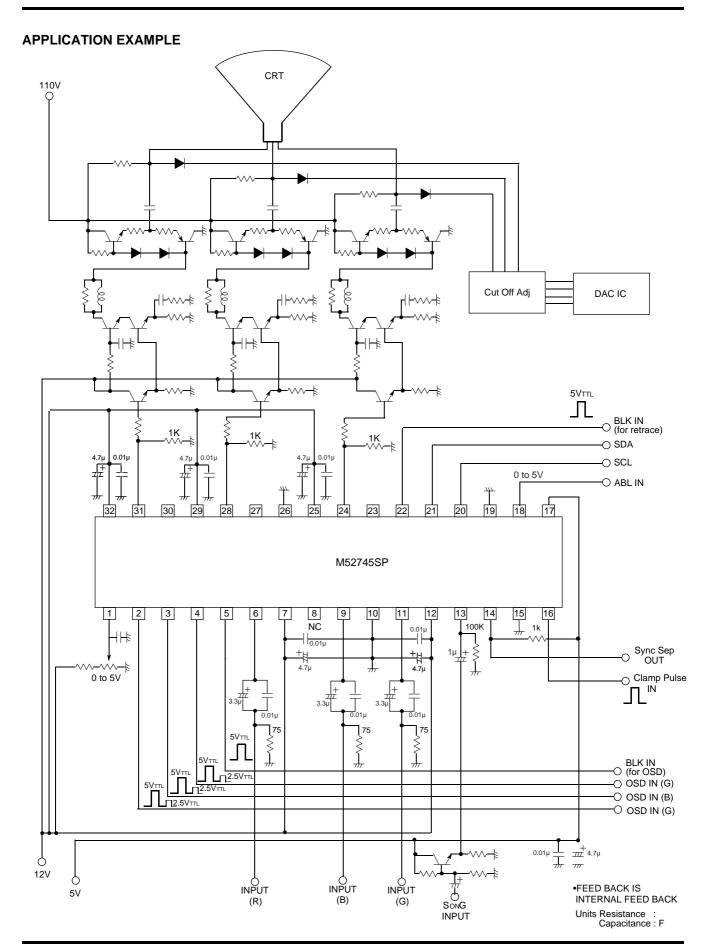



TYPICAL CHARACTERISTICS



0

BUS CONTROLLED 3-CHANNEL VIDEO PREAMP FOR CRT DISPLAY MONITOR


SYNC ON GREEN INPUT MIN. PULSE WIDTH (Video duty=75%) (Video duty=75%)

INPUT SYNC AMPLITUDE (VP-P)

0.5

DESCRIPTION OF PIN

Pin No.	Name	DC voltage (V)	Peripheral circuit of pins	Description of function
5	OSD BLK IN	-	5 B 0.4mA 7 2.7V	•Input pulses
6 9 11	INPUT (R) INPUT (B) INPUT (G)	2.5	2k 2k 2k 0.3mA CP 2.5V	•Clamped to about 2.5V due to clamp pulses from pin 16. •Input at low impedance.
7 12	Vcc	12	-	•Apply equivalent voltage to 3 channels.
2 3 4	OSD IN (R) OSD IN (B) OSD IN (G)	-	1mA 3.5V 2.0V	•Input pulses 4.0 to 5V 2.5 to 3V GND to 1.5V •Connected to GND if not used.
10 15 19 26	GND	GND	-	
13	INPUT (S on G)	When open 2.5V	3.2V 13	•SYNC ON GREEN input pin for sync separation. Sync is negative. input signal at Pin7, compare with the reference voltage of internal circuit in order to separate sync signal. •When not used, set to OPEN.

DESCRIPTION OF PIN (cont.)

Pin No.	Name	DC voltage (V)	Peripheral circuit of pins	Description of function
18	ABL IN	When open 2.5V	2.5V 20k 1.2k \$30k 0.5mA (18)	•ABL (Automatic Beam Limiter) input pin. Recommended voltage range is 0 to 5V. When ABL function is not used, set to 5V.
17	Vcc (5V)	5	-	
14	S on G Sep OUT	-	(14) ————————————————————————————————————	Sync signal output pin, Being of open collector output type.
16	Clamp Pulse IN	-	2.2V 0.15mA	•Input pulses - 2.5 to 5V GND to 0.5V •Input at low impedance.
20	SCL	-	20 2k 3v	•SCL of PC BUS (Serial clock line) VTH=2.3V

DESCRIPTION OF PIN (cont.)

Pin No.	Name	DC voltage (V)	Peripheral circuit of pins	Description of function
21	SDA	-	21 3V 3V	•SDA of I ² C BUS (Serial data line) VTH=2.3V
22	Retrace BLK IN	-	50k R G G B T 2.25V	•Input pulses
23 27 30	EXT Feed Back (G) EXT Feed Back (B) EXT Feed Back (R)	Variable	35k × × × × × × × × × × × × × × × × × × ×	
24 28 31	OUTPUT (G) OUTPUT (B) OUTPUT (R)	Variable	50	•A resistor is needed on the GND side. Set discretionally to maximum 15mA, depending on the required driving capacity.
25 29 32	VCC2	12		•Used to supply power to output emitter follower only.

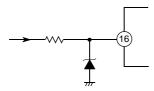
DESCRIPTION OF PIN (cont.)

Pin No.	Name	DC voltage (V)	Peripheral circuit of pins	Description of function
1	Brightness	-	35k × 1	•It is recommended that the IC be used between pedestal voltage 2V and 3V.

APPLICATION METHOD FOR M52745SP

CLAMP PULSE INPUT

Clamp pulse width is recommended

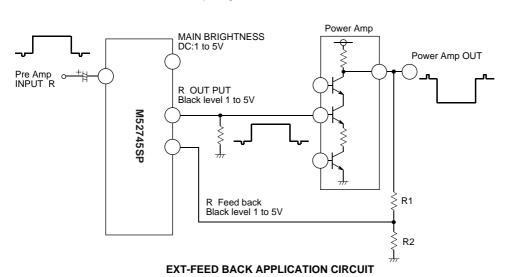

above 15kHz, 1.0µsec

above 30kHz, 0.5µsec

above 64kHz, 0.3µsec.

The clamp pulse circuit in ordinary set is a long round about way, and beside high voltage, sometimes connected to external terminal, it is very easy affected by large surge.

Therefore, the Fig. shown right is recommended.



EXT-FEED BACK

In case of application circuit example of lower figure, Set up R1, R2 which seems that the black level of the signal feedbacked from Power AMP is 1V, when the bottom of output signal is 1V.

NOTICE OF APPLICATION

- •Make the nearest distance between output pin and pull down resistor.
- •Recommended pedestal voltage of IC output signal is 2V.

