M61006FP

DISTANCE DETECTION SIGNAL PROCESSING FOR 3 V SUPPLY VOLTAGE

REJ03F0039-0100Z
Rev.1.0
Sep.16.2003

Description

M61006FP is a semiconductor integrated circuit including distance detection signal processing circuit for 3 V supply voltage. This device transforms each optical inflow current I1 and I2 from PSD SENSOR into the voltage, and integrates the output after doing calculation corresponds to I1 / (I1+I2), and outputs it as the voltage data.

Features

- Wide supply voltage range: Vcc $=2.2$ to 5.5 V
- Including clamp level switching circuit (It is possible to set a clamp level to 15 points with outside control.)
- Including infinity discrimination function (clamp on detection function)
- Including POWER ON RESET function
- Including simple temperature detection function (It is possible to correct temperature with transmitting this output to the microcomputer.)

Application

- Auto focus control for a camera, short distance sensor, etc.

Recommended Operating Condition

- Supply voltage range
..... 2.2 V to 5.5 V
- Rated supply voltage 3.0 V

Block Diagram

Note: Pin9, 16 is avail only for engineering sample.

Pin Configuration (Top View)

Note: Pin9,16 is available only for engineeing sample.
Vcc, GND1: small signalanalog line
Vcc, GND2: analog line or control line

Absolute Maximum Ratings

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Parameter	Symbol	Rating	Unit	Remark
Supply voltage	V_{CC}	7.0	V	Note1
Power dissipation	Pd	320	mW	$\mathrm{Ta}=25^{\circ} \mathrm{C}$
Thermal derating	$\mathrm{K} \theta$	-3.2	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$
Pin supply voltage	V_{IF}	7.0	V	$\mathrm{Pin} 6,7,8$
Another terminal	VI / O	0 to V CC +0.3	V	Note2
Output inflow current	Icmout	0.5	mA	NPN open collector
Operating temperature	Topr	-10 to 50	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-40 to 125	${ }^{\circ} \mathrm{C}$	

Notes: 1. As a principle, do not provide a supply voltage reversely.
2. As a principle, do not provide the terminals with the voltage over supply voltage or under ground voltage.

Thermal Derating Curve

Electrical Characteristics - 1

Classificatin	Parameter	Symbol	Test conditions	Limits			$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$		
							Unit	V_{cc}	No
				Min	Typ	Max			
	Operating supply voltage range	VCC		2.2	3.0	5.5	V	3.0	
Consuming Current	Usual consuming current	ICC1		-	3.9	5.1	mA		*6
	Rapid charge consuming current 1	ICC2	AFOUT rapid charge consuming current VAFOUT $=0 \mathrm{~V}$	-	9.5	12.5	mA		$\begin{aligned} & \text { *1 } \\ & \text { *6 } \end{aligned}$
	Rapid charge consuming current 2	ICC3	CH rapid charge consuming current	-	10.5	13.7	mA		$\begin{aligned} & \hline \text { *1 } \\ & \text { *6 } \end{aligned}$
CONT pin	CONT "H" input voltage	VCOH		1.1	-	7.0	V		
	CONT "L" input voltage	VCOL		0	-	0.3	V		
	CONT "H" input current	ICOH	$\mathrm{VIH}=5.5 \mathrm{~V}$	-	-	1.0	$\mu \mathrm{A}$		* 6
	CONT "L" input current	ICOL	$\mathrm{VIL}=0 \mathrm{~V}$	-84	-64	-44	$\mu \mathrm{A}$		
CLALV pin	CLALV "H" input voltage	VCLH		1.1	-	7.0	V		
	CLALV "L" input voltage	VCLL		0	-	0.3	V		
	CLALV "H" input current	ICLH	$\mathrm{VIH}=5.5 \mathrm{~V}$	-	-	1.0	$\mu \mathrm{A}$		*6
	CLALV "L" input current	ICLL	$\mathrm{VIL}=0 \mathrm{~V}$	-84	-64	-44	$\mu \mathrm{A}$		
HOLD C	CH rapid charge current	ICHQC	$\begin{aligned} & \mathrm{IPSD}=5 \mu \mathrm{~A} \\ & \mathrm{VCH}=0 \mathrm{~V} \end{aligned}$	-2000	-1000	-500	$\mu \mathrm{A}$		
	CH stationary charge current	ICHC	$\mathrm{VCH}=0 \mathrm{~V}$	-33	-22	-11	$\mu \mathrm{A}$		
	CH stationary discharge current	ICHD	$\mathrm{VCH}=1.5 \mathrm{~V}$	11	22	33	$\mu \mathrm{A}$		
Integration circuit	AFOUT reset current	$\mathrm{I}_{\text {RAFOUT }}$	VAFOUT $=0.5 \mathrm{~V}$	600	1200	2400	$\mu \mathrm{A}$		
	AFOUT integrating off current	loffafout	$\mathrm{VAFOUT}=0.5 \mathrm{~V}$	-	-	1.0	$\mu \mathrm{A}$		*6
	AFOUT integrating current (maximum integration current)	$\mathrm{I}_{\text {intafout }}$	$\begin{aligned} & \mathrm{VAFOUT}=0.5 \mathrm{~V} \\ & \mathrm{VCHF}=2.0 \mathrm{~V}, \\ & \mathrm{VCHN}=0 \mathrm{~V} \end{aligned}$	-13.0	-10.0	-7.0	$\mu \mathrm{A}$		
	Distance measurement integration current stability	$\Delta \mathrm{I}_{\text {INT }}$		-	3.0	6.0	\%		$\begin{aligned} & \text { *2 } \\ & \text { *6 } \end{aligned}$
	AFOUT temperature revision integration current	$\mathrm{It}_{\text {AFOUT }}$	VAFOUT $=0.5 \mathrm{~V}$	-6.5	-5.0	-3.5	$\mu \mathrm{A}$		
	The stability of temperature integration current	$\Delta \mathrm{lt}$		-	3.0	6.0	\%		$\begin{aligned} & \text { *2 } \\ & \text { *6 } \end{aligned}$
	Dynamic rage of AFOUT pin	$\mathrm{D}_{\text {AFOUT }}$		-	-	$\begin{aligned} & 2.7 \\ & \left(\mathrm{~V}_{\mathrm{cc}} 0.3\right) \end{aligned}$		\downarrow	*7

Electrical Characteristics - 2

Classification	Parameter	Symbol	Test conditions	Limits			Unit	$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$		
								Note		
				Min	Typ	Max				
AF Input Condition1	AF output voltage (9:1) -1	D (9:1) - 1	Near side 9: far side 1 $\mathrm{IP}=100 \mathrm{nA}$	1.26	1.81	2.36		V	3.0	*3
	AF output voltage (6:4) -1	D (6:4) - 1	Near side 6: far side 4 $\mathrm{IP}=100 \mathrm{nA}$	0.83	1.19	1.55	V		*3	
	AF output voltage (3:7) -1	D (3:7) - 1	Near side 3: far side 7 $\mathrm{IP}=100 \mathrm{nA}$	0.41	0.59	0.77	V		*3	
	AF slope - 1	$\Delta \mathrm{AF}$ - 1		0.85	1.22	1.59	V		* 3	
	AF linearity - 1	LAF - 1		0.875	0.975	1.075	-		*3	
AF input condition2	AFoutput time $(9: 1)-2$	D (9:1) - 2	Near side 9: Far side1 $\mathrm{IP}=50 \mathrm{nA}$	1.26	1.81	2.36	V		*3	
	AFoutput time $(6: 4)-2$	D (6:4) - 2	Near side 6: Far side4 $\mathrm{IP}=50 \mathrm{nA}$	0.83	1.19	1.55	V		*3	
	AFoutput time $(3: 7)-2$	D (3:7)-2	Near side 3: Far side7 $\mathrm{IP}=50 \mathrm{nA}$	0.41	0.59	0.77	V		*3	
	AF slope - 2	$\Delta \mathrm{AF}$ - 2		0.85	1.22	1.59	V		*3	
	AF linearity - 2	LAF - 2		0.875	0.975	1.075	-		*3	
AF input condition3	AFoutput time $(9: 1)-3$	D (9:1) - 3	Near side 9: Far side1 $\mathrm{IP}=50 \mathrm{nA}$	1.26	1.81	2.36	V		*3	
	AFoutput time $(6: 4)-3$	D (6:4) - 3	Near side 6: Far side4 $\mathrm{IP}=50 \mathrm{nA}$	0.83	1.19	1.55	V		*3	
	AFoutput time $(3: 7)-3$	D (3:7) - 3	Near side 3: Far side7 $\mathrm{IP}=50 \mathrm{nA}$	0.41	0.59	0.77	V		*3	
	AF slope - 3	$\Delta \mathrm{AF}$ - 3		0.85	1.22	1.59	$\mu \mathrm{A}$		*3	
	AF linearity - 3	LAF - 3		0.875	0.975	1.075	V		* 3	
AF input condition 1 to 2	AFoutput time $(9: 1)-3$	D (9:1) - 3	Near side 9: Far side1 (condition 1 to 3)	-0.022	-	0.022	-		*3	
	AFoutput time (6:4) - 3	D (6:4) - 3	Near side 6: Far side4 (condition 1 to 3)	-0.022	-	0.022	-		*3	
	AFoutput time $(3: 7)-3$	D (3:7) - 3	Near side 3: Far side7 (condition 1 to 3)	-0.022	-	0.022	-	∇	*3	

Electrical Characteristics - 3

Classification	Parameter	Symbol	Test conditions	Limits			Unit	$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$		
							V_{cc}	Note		
				Min	Typ	Max				
Clamp determin ation	CMOUT leak current	ICMOUTH	VCMOUT $=5.5 \mathrm{~V}$	-	-	1.0		$\mu \mathrm{A}$	3.0	*6
	CMOUT saturation current	VCMOUTL	ICMOUT $=500 \mu \mathrm{~A}$	-	-	0.3	V		*6	
SENSOR	Signal ray maximum current	$\Delta \mathrm{INF}$		-	-	3.0	$\mu \mathrm{A}$		* 4	
									*8	
	Capacity of the current to extract stationary rays	IPSD		-	-	30	$\mu \mathrm{A}$		$\begin{aligned} & \text { *4 } \\ & \text { *8 } \end{aligned}$	
	Clamp level	ICLAM	The change values about TYP current (Design target value)	-50	-	50	\%			
Clout for measure ment rays	Nch Response speed of Circuit for measurement rays	$\Delta \mathrm{T}_{\text {TESTN }}$		-	-	26	$\mu \mathrm{sec}$		$\begin{aligned} & * 5 \\ & * 6 \end{aligned}$	
	Fch Response speed of Circuit for measurement rays	$\Delta \mathrm{T}_{\text {TESTF }}$		-	-	26	$\mu \mathrm{sec}$	∇	$\begin{aligned} & * 5 \\ & * 6 \end{aligned}$	

M61006FP

*1 Rapid charge consuming current 1 and 2 are measured with the following conditions:

- Rapid charge consuming current 1
= (Rapid charge current for integration capacitance AFOUT dielectric absorption) + (Usual consuming current)
- Rapid charge consuming current 2
= (mainly Rapid charge current for hold capacitance CHN, CHF) + (Usual consuming current)

Shorten hold capacitance CHN, CHF pin, integration capacitance AFOUT pin and GND at measurement rapid charge consuming current 1 and hold capacitance CHN, CHF pin and GND at measurement rapid charge consuming current 2 to leave rapid charge current on stationary. But in practical uses it runs as the follows:

- Rapid charge current for hold capacitance CHN, CHF:

Use in a constant current charge. The current remain consuming in IC after completing charge.

- Rapid charge current for integration capacitance AFOUT dielectric absourption:

Transition current. It flows until completing charge.
*2 Charging rate of distance measurement integration current and temperature integration current when the voltage of AFOUT changes.

```
\(\Delta_{\text {IAFOUT1 }}=\left(1-\frac{\text { distance measurement current }(\text { at AFOUT }=0.5 \mathrm{~V})}{\text { distance measurement current }(\text { at AFOUT }=\mathrm{VCC}-0.3 \mathrm{~V})} / \quad(\right.\) VCC-0.3V-0.5V \() \times 100 \%\)
\(\Delta\) IAFOUT2 \(=\left(1-\frac{\text { distance measurement current }(\text { at AFOUT }=0 \mathrm{~V})}{\text { distance measurement current }(\text { at AFOUT }=\mathrm{VCC}-0.3 \mathrm{~V})} / \quad(\right.\) VCC-0.3V-0.5V \() \times 100 \%\)
```


M61006FP

*3 Set a current output from PHOTOCUPPLER to following input conditions, and input the varied resistance ratio. AF slope, linearity is calculated with following equations by measuring AFOUT output voltage.

Input condition1: IPSD $($ Stationary light current $)=0$	$I 1: 12=100 \mathrm{nA}$
Input condition2: IPSD $($ Stationary light current $)=0$	$I 1: 12=50 \mathrm{nA}$
Input condition3: IPSD $($ Stationary light current $)=10 \mu \mathrm{~A}$	$11: 12=100 \mathrm{nA}$

D (9:1) \cdots...The AFOUT output voltage at input with $11: I 2=9: 1$
D (6:4) \cdots.. The AFOUT output voltage at input with $11: I 2=6: 4$
D (3:7) \cdots..The AFOUT output voltage at input with $11: 12=3: 7$
AF slope: $\Delta A F=D(9: 1)-D(3: 7)$
$A F$ linearity: $L(A F)=(D(9: 1)-(6: 4)) /(D(6: 4)-(3: 7))$
PSD quite resistance: $120 \mathrm{k} \Omega$
*4 Input current of one side channel without saturating stationary light remove circuit and I / V transform amplifier circuit.
*5 Confirm not to change the output data at measuring AF input condition (1 to 4), when you shorten intervals between stationary ray hold and distance measurement integration beginning to MIN $26 \mu \mathrm{~S}$.
*6 The value in this item is less than "max" value at any cases.
*7 Set AFOUT capacity, distance measurement integration time, and the number of integration under max value, because the "max" value in this item indicates a maximum of IC dynamic range.
*8 Establish optional system to be input current to IC less than standard value, because this item's value indicates maximum input current to IC.

Interface Table

$\left(\mathrm{Vcc}=3.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Controls

(1) $\mathrm{V}_{\mathrm{CC}}(\mathrm{Vcc} 1+\mathrm{Vcc} 2)$

The power on reset circuit with a built in IC work by this pin turned on, and the whole IC including a part of logic circuit is done reset. Also the workings of power on reset circuit complete by less than $100 \mu \mathrm{~S}$ from rise edge of VCC1, 2 (VCC1, VCC2 greater than 2.2 V).

Note: Regard as rising supply voltage in establishing the timing if uses of this IC is in connecting large capacitance with supply pin.
(2) CLALV:

Do reset the whole IC including the clamp level set and the part of logic. This IC include D / A converter for 4 bits, and it is possible to establish clamp level to 15 points by clock input after cancel of reset (including none clamp). And also, the whole IC including parts of logic is reset by 15 th clump level setting pulse (at intervals of 16 click after this clamp)

Values of each bit current are established as the right side. The number of input clock and clamp level are as follows.

bit	Set up current (Typ.)
1	0.130 nA
2	$0.260 \mathrm{~A} A$
3	0.52 nA
4	1.040 nA

Clock value	Clamp level(Typ.)
0	None clamp
1	0.130 nA
2	0.260 nA
3	0.390 nA
4	0.520 nA
5	0.650 nA
6	0.780 nA
7	0.910 nA
8	1.040 nA
9	1.170 nA
10	1.300 nA
11	1.430 nA

Clock value	Clamp level(Typ.)
12	1.560 nA
13	1.690 nA
14	1.820 nA
15	None clamp,Logic reset
16	0.130 nA
17	0.260 nA
18	0.390 nA
19	0.520 nA
20	0.650 nA
\vdots	\vdots
	\vdots
	\vdots

Clamp level is established with fall edge of input clock. It repeats the same value after 15 clock.
(3) CONT:

By the clock input of the this terminal after canceling the IC reset, it begin to control the whole IC as following function without establishing clamp level. And it repeat to switch over stationary hold and distance measurement integration current after 7th clock
a) ON / OFF of dielectric polarity countermeasure circuit integration capacitance
b) ON / OFF of CH rapid charge
c) ON / OFF of AFOUT pin reset
d) ON / OFF of temperature correct integration
e) ON / OFF of stationary light hold
f) ON / OFF of distance measurement integration

a. The dielectric polarty contermeasure of integlation capacitance:

The dielectric polarity contermeasure circuit of integration capacitance run between reset and rise edge of first CONT pin.
b. CH rapid charge:

After reset cancel, CH capacitance is charged rapidy between the fall edge of first clock and second ones.
c. AFOUT pin reset:

After reset cannel, accumulated chage at capacitance added to AFOUT pin is removed between the fall clock edges of 1 to 2 and 5 to 6 .
d. Temperrature correct integlation:

After reset cannel, temperature correct integration is carried out betweeen the fall edge of 3rd clock and 4th clock. This voltage of temperature corrent integration mentioned above is maintained at AFOUT pin. This voltage is currected temperature (including time charge correct of AFOUT pin added capacotance) as compared with base voltage estabilished previously.
e. Stationaly light hold:

After 7th clock from reset cuncel (from 7th clock rise to 8th clock rise), stationary light hold is carried out over and over.
f. Distance measurement integration:

After 7th clock from reset cancel (from 7th clock fall to 8th clock rise), distance measurement integration is carried out over and over.

M61006FP

(4) AFOUT:

After reset cancel, the voltage is outputted at intervals of temperature correct integration and distance measurement integration from about 0 V to above a D range of this pin. The output is carried out linearly by integration current or integration time.
(5) CMOUT:

After the CONT pin input 7th clock fall from reset cancel, the signal current at PSDF side is distinguished from the clamp level in terms of the values. The result is outputted at each discrimination as the follows.
And after the CONT pin input 7th clock fall, the discrimination is carried out with the beginning of distance measurement start. After reset cancel, until CONT pin input 8th clock "H" is further outputted.

PSDF side signal current	CMOUT output
Greater than clamp level	H
Less than clamp level	L

Notes: 1. It is necessary to contact a control signal for IRED with the control signal mentioned above.
2. Connect NC terminals (4, 9, 12, 16 pin) to Vcc1 terminal or GND.

Sequential Time Chart Example

Mask Option

1) Control terminal variation

(1) Full spec (typical)

This type uses CONT,CLALV,AFOUT ,CMOUT terminal as I/F terminal to the microcomputer.
This is the typical type at M61006FP.
(2)

Most simplified type

This type does not connect CLALV,CMOUT terminals to thi microcomputer.
When above mentioned terminals are not connected to the microcomputer without changing mask,connect each terminal to the ground. In this case,clamp level becomes 0 And Power on reset in IC is used as reset.
(3) Explanation of the terminal that can be simplified.
(a) CLALV In the typical type,15 ways clamp levels can be set by the outside control,but also the terminal can be simplified by mask option as follows.
(I) Clamp level fixation • Selects 1 point from 15 steps of clamp level and fixes it.
(II) Clamp level 2 step changeover • • . Selects 2 points from clamp level and switches it by changing CLALV terminal HIGH/LOW. However, as selecting 2 points, there is a following constraint.

Fixes 3 parts of 4 switches corresponds to each bit in figure to ON or OFF.controls another part bv CLALV terminal .
(b) CMOUT • When an infinity decision function shouldn't be necessary, it is possible that a CMOUT terminal is removed.

Package Dimensions

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, onte-machi, Chiyoda-ku, Tokyo 100-00004, Japan
Keep safety first in your circuit designs! maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's Renesas Techny do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party
diagrams, charts, programs, algorithms,
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor ome page (http://www.renesas.com)
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assume no responsibility for any damage, liability or other loss resulting from the information contained herein
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
and/or the country of destination is prohibited
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

Renesas Technology America, Inc

450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628) 585 100, Fax: <44> (1628) 585900

Renesas Technology Europe GmbH

Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 38070 0, Fax: <49> (89) 9293011
Renesas Technology Hong Kong Ltd.
7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong
Tel: < $852>2265-6688$, Fax: <852> 2375-6836
Renesas Technology Taiwan Co., Ltd.
FL 10, \#99, Fu-Hsing N. Rd., Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
26/F., Ruijin Building, No. 205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.

1, Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

