M61140FP
 TUNER SINGLE CHIP

Description

The M61140FP is a semiconductor integrated circuit consisting of Tuner signal processing for NTSC color TV and VCRs.

The circuit includes Mixer circuit in Tuning system, Oscillator circuit, PLL frequency synthesizer and VIF/SIF, which permits a smaller tuner system.

Features

- VIF/SIF

Inter carrier type for NTSC
Coil-less VCO
Adjustment free AFT
High-speed IF AGC

- PLL

Low phase noise and High-speed lock-up
Built-in band switch driver (4 port)
I2C bus control
Available for both XO and external reference

- Mixer/Oscillator

Built-in U\&V Oscillator and mixer
Built-in IF Amplifier (Unbalanced Output)

Application

TV, VCR

Recommended Operating Conditions

Supply voltage range --- 4.75 to 5.25 V
Recommended supply voltage --- 5.0 V

Pin configuration and Block diagram

Absolute maximum ratings ($\mathbf{T a}=\mathbf{2 5}^{\circ} \mathbf{C}$, unless otherwise noted)

Parameter		Symbol	Ratings	Unit	Note
	Supply Voltage	Vcc	6	V	
MO Block	Maximum Allowable Input	Vin	126	$\mathrm{dB} \mu \mathrm{V}$	
PLL Block	Input Voltage	Vimax	6	V	Pin25 to 27
	Port Output Voltage	Vo	6	V	Pin20 to 22,15
	Port Output Current (1)	Iopmax1	26	mA	Pin20, 21
	Port Output Current (2)	Iopmax2	7	mA	Pin15, 22
	Port Output Current (3)	Iopmax3	33	mA	2 circuits are on at same time
	SDA Output Current	Iosdamax	10	mA	
	Power Consumption	Pd	750	mW	Recommended circuit board. When Cu occupancy area is 50%.
	Operating Temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$	
	Storage Temperature	Tstg	-40 to +150	${ }^{\circ} \mathrm{C}$	

Temperature Characteristics (maximum ratings)

Mounting in standard circuit board (70 mmx 70 mmx 1.6 mmt Epoxy board of one side copper)

Recommended Operating Condition ($\mathbf{T a}=\mathbf{2 5}^{\circ} \mathrm{C}$, unless otherwise noted)

Parameter	Symbol	Ratings	Unit	Note
Guarantee Operating Voltage	Vcc	$4.5 \sim 5.3$	V	Refer to Data
Supply Voltage Range	Vcc	$4.75 \sim 5.25$	V	
Operating frequency of Crystal oscillator	fopr	4.0	MHz	
Port output current (1)	loprt1	$0 \sim 25$	mA	Pin 20,21
Port output current (2)	loprt2	$0 \sim 5$	mA	Pin 15,22

Pin Description

| Pin No.Fin name
 OIDEO DET | Video detected output terminal.
 SIF trap and SIF B.P.F. are
 connected to this terminal.
 Because of open emitter
 configuration, an externally
 connected drive resistor is
 necessary. |
| :--- | :--- | | Regulated voltage output. |
| :--- |
| Approximately 3V output. |

Pin No.	Pin name
22	BFMST Output configuration is PNP open collector. When band selection bit PFMST is set "1", current is output. Reference frequency or divided frequency of local are output by test mode condition.

Pin No.	Pin name	Function	Circuit Diagram
27	SDA	SDA input terminal. Reading and writing of data confirm to $\mathrm{I}^{2} \mathrm{C}$ bus of Philips.	
28	Logic Vcc	Logic block power supply.	
29	REF IN	Reference frequency input terminal. Connect crystal oscillator at this terminal, or external signal (Sine wave).In this case of using external sine wave signal, pull down this terminal with 1.5 k to $3.3 \mathrm{k} \Omega$.	
30	Logic GND	Logic block power supply.	
31	VT DRIVE	Filter transistor drive terminal. As for drive output, control bit "OS" controls it On or OFF	(28)
32	CP	Charge pump output terminal. When the phase of the divide frequency of local is lead compared with the reference frequency, the "source" current state becomes active. If it is lag, the "sink" current becomes active. If the phase are the same, the high impedance state becomes active.	
33	VIF Vcc	VIF block power supply.	
34	IF2 Vcc	Power supply terminal exclusively for IF amp output (pin 34) circuit.	
35	IF OUT	IF amp output terminal. This terminal is a low impedance and output IF frequency.	
36	IF2 GND	IF2 grand terminal. This grand is exclusively used by circuit of IF amplifier	

Pin No.	Pin name	Function	Circuit Diagram
37	VIF IN 1	IF signal thew SAW filter is input.	
38	VIF IN 2	It is a balance type input.	
39	AF BYPASS	AF bypass terminal. It is connected to one of the input of a differential amplifier, external capacitor provides AC filtering. When resistor is connected in series with capacitor, it is possible to lows the amplitude of the audio output. When audio output terminal is not used, please connect pin 22 to GND.	
40	AUDIO OUT	Sound output terminal. Deemphasis is achieved by external components.	
41	QIF OUT	QIF output terminal. FM signal which is converted to 4.5 MHz is output. Additionally, this pin has dual function of being VIF VCO type selection. Connected to GND via $1.2 \mathrm{k} \Omega$	

Pin No.	Pin name	Function
48	$E Q$ IN	The video signal threw the SIF trap is input to this terminal. DC impression from pin 1 is required for the input to 48 pins.

Setting Data

M61140FP's bus format is based on Philips's $\mathrm{I}^{2} \mathrm{C}$-bus.
Bidirectional bus communication control can be performed. It consists of WRITE mode which receives various data, and READ mode which transmits data. Recognition in WRITE mode and READ mode is performed by specification of the last bit on Address Byte (R / W bit). When the setup of a R/W bit is " 0 ", it is set as WRITE mode and, in the case of " 1 ", is set as READ mode. Furthermore, it has the address in which four programs are possible.

It enables this to use two or more devices on the same $\mathrm{I}^{2} \mathrm{C}$ bus.
Moreover, four programmable addresses are possible. Therefore, two or more devices become usable on $\mathrm{I}^{2} \mathrm{C}$ bus.
A setup of an address is chosen by the voltage impressed to an address setting terminal (ADS:25 pin).
If the address Byte in agreement is received, a data line will be set to " L " between knowledge, and at the time of WRITE mode, if Data Byte is received, SDA line between knowledge will be set to "L."

It shows a definition of bus protocol admitted in the following.
Mode_1 STA CA DB1 DB2 CB1 CB2 STO
Mode_2 STA CA CB1 CB2 DB1 DB2 STO
Mode_3 STA CA DB1 DB2 STO
Mode_4 STA CA CB1 CB2 STO
STA : Start condition
STO : Stop condition
CA : Chip address
DB1 : Divider data byte 1
DB2 : Divider data byte 2
CB1: Control data byte 1
CB2 : Band data byte 2
(1) WRITE mode

The information of 5 bytes required for circuit operational chip address, control data and band SW data of 2 bytes and divider data of 2 bytes. after the chip address input, 2 or 4 bytes can be received. Function bit is contained in the first and the third data byte to distinguish between divider and 'control data/band SW data', with "0" going ahead of divider data, and "1" going ahead of 'control data/band SWdata'.
The timing of Writing data for bus protocol Mode is shown in the figure below. Divider data uses 15 bits and is read in at the rise of the eighth clock bit of the second byte divider data (DB2). Control data (CB1) and band SW-data (BB) are each read in at the rise of their eighth clock bit.

Timing Chart

Write mode data format

Byte	MSB					LSB			
Address Byte (CA)	1	1	0	0	0	MA1	MA0	R/W=0	A
Divider Byte1 (DB1)	0	N14	N13	N12	N11	N10	N9	N8	A
Divider Byte2 (DB2)	N7	N6	N5	N4	N3	N2	N1	N0	A
Control Byte (CB1)	1	CP	T2	T1	T0	Rsa	Rsb	OS	A
Band Byte (CB2)	X	X	X	X	PUHF	PFMST	PVHFH	PVHFL	A

Programmable Address Bit

Address input voltage applied to ADS [V]	MA1	MA0
0 to $0.1 \times \mathrm{Vcc}$	0	0
Open or 0.2 to $0.3 x \mathrm{Vcc}$	0	1
0.4 xVcc to 0.6 x cc	1	0
0.9 xVcc to Vcc	1	1

N14 to N0 : Set up for division ratio of the programmable divider
Frequency of VCO fvco: fvco=fref $x \mathrm{~N}$
Division ratio N: N=N14(2^14)+N13(2^13)+ --- +N0(2^0)

Range of division ratio N: $\mathrm{N}=1,024$ to 32,767
fref: Reference frequency of phase comparator

CP: Set up the charge pump current

$\mathbf{C P}$	Charge pump current *
0	$70 \mu \mathrm{~A}$
1	$300 \mu \mathrm{~A}$

Note:* Current of charge pump is typ current
In the case of setting current $270 \mu \mathrm{~A}$, when PLL is locked, charge pump current is automatically switched to $\mathrm{CP}=\mathrm{O}$ $(70 \mu \mathrm{~A})$.

T2, T1, T0 : Set up for test mode

CP	T2	T1	T0	Charge pump	Test output	Test SW	Mode
0	0	0	X	CP switched off	-	OFF	Normal mode
1	0	0	X	CP switched on	-	OFF	Normal mode
X	0	1	X	High impedance	-	OFF	Test mode
X	1	1	0	Sink	-	OFF	Test mode
X	1	1	1	Source	-	OFF	Test mode
0	1	0	0	High impedance	fREF	OFF	Test mode
1	1	0	X	CP switched on	-	ON	TV test mode
0	1	0	1	High impedance	f1/N	OFF	Test mode

Note : fREF and $f 1 / \mathrm{N}$ is available on pin PFMST(pin 22). Test SW is for the mix filter damping switch

Rsa : Set up tuning step

tuning step frequency

Rsa	Rsb	Division ratio	@4MHz X'tal
0	1	$1 / 128$	31.25 kHz
1	1	$1 / 64$	62.5 kHz
X	0	$1 / 80$	50.0 kHz

OS : Set up drive output

OS	Drive output	Mode
0	ON	Normal mode
1	OFF("L")level	Test mode

PFMST, PUHF , PVHFL,PVHFH : PORT setting

PFMST,PUHF,PVHFL,PVHFH	Output
0	OFF
1	ON

PNP open collector output. When PUHF is "OFF", Mixer and Oscillator active VHF mode.
(2) READ mode data format

At the time of READ mode, a power-on reset state, a phase comparison machine lock detector output state, and the state of the charge pump current change SW are outputted to a master device.

Read mode data format

Byte	MSB					LSB			
Address Byte	1	1	0	0	0	MA1	MA0	R/W $=1$	A
Status Byte	POR	FL	ACPS	X	X	X	X	X	A

X: 0 or 1 Don't care
POR: Power on reset flag. Output is "1" at power-on
Set to "1" when the time of a power supply voltage injection or power supply voltage falls in about 3 V or less.
Reset by " 0 ", if a Request to Send is carried out in READ mode and a flag is returned. Power supply voltage is about 3 v or more, Reset by " 0 ", after returning a flag in READ mode.

FL: Lock detector flag. Output is " 1 " at locked, output is " 0 " at unlocked.
ACPS: Automatic charge pump current flag. Output is " 0 " at charge pump current automatically switched mode, output is "1" at other mode.
(3) Power on reset

The initial status is shown as below when supply voltage is turned on. If supply voltage becomes less than about 3.0 V , the initial status is set.

Byte	MSB					LSB		
Divider Byte1 (DB1)	0	X						
Divider Byte2 (DB2)	X	X	X	X	X	X	X	X
Control Byte (CB1)	1	1	0	1	X	1	1	1
Band Byte (CB2)	X	X	X	X	0	0	0	0

(4) Data format example

Ex1.US-TV-ch2 (fRF=55.25MHz,fosc=101MHz),CP sw=ON, Reference Frequency=4MHz,31.25kHzstep, PUHF="ON"

Byte	MSB					LSB			
Address Byte	1	1	0	0	0	MA1	MA0	R/W=0	A
Divider Byte1 (DB1)	0	0	0	0	1	1	0	0	A
Divider Byte2 (DB2)	1	0	1	0	0	0	0	0	A
Control Byte (CB1)	1	1	0	0	0	0	1	0	A
Band Byte (CB2)	X	X	X	X	0	0	0	1	A

Divide ratio $\mathrm{N}=101 * 10^{6} / 31.25 * 10^{3}$

$$
\begin{aligned}
& =3232 \\
& =2^{11}+2^{10}+2^{7}+2^{5}
\end{aligned}
$$

Purchase of Renesas Technology electric corporation's $I^{2} C$ components conveys a license under the Philips $I^{2} C$ Patent Rights to use these components in an $I^{2} C$ system, provided that the system conforms to the $I^{2} C$ Standard Specification as defined by Philips

Electrical Characteristics

DC characteristics

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}\right.$ otherwise noted.)

Item	Symbol	Measure point	Input SG	Condition switches set to position " 1 " unless otherwise noted	Limits			Unit	Note
					min	typ	max		
IF Vcc current	IcclF	33	-	SW33=2	40	53	66	mA	
IF2 Vcc current	IccIF2	34	-	SW34=2	14	19	24	mA	
M/O Vcc current	IccRF	24	-	SW24=2	14	18	23	mA	
Logic Vcc current(1)	IccLo1	28	-	SW28=2 Port OFF	11	14	18	mA	
Logic Vcc current(2)	IccLo2	28	-	SW28=2, Io(PVHFL) or $\mathrm{lo}(\mathrm{PVHFH})=20 \mathrm{~mA}$	27	37	46	mA	
Logic Vcc current(3)	IccLo3	28	-	SW28=2, Io(PFMST) or $\mathrm{lo}(\mathrm{PUHF})=5 \mathrm{~mA}$	15	20	25	mA	

Mixer and OSC Block

($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}$ otherwise noted.)

	Item	Symbol	Measure point	Input SG	Condition switches set to position "1" unless otherwise noted	Limits			Unit	Note
						min	typ	max		
V	Conversion gain1	GvcV1	35,16	-	$\mathrm{fRF}=55.25 \mathrm{MHz}$, CW	20	23	26	dB	
H	Conversion gain2	GvcV2	35,16	-	fRF=361.25MHz, CW	20	23	26	dB	
F	NF1	NFV1	35	-	$\mathrm{fRF}=55.25 \mathrm{MHz}$, CW	-	16.5	18	dB	
	NF2	NFV2	35	-	fRF=361.25MHz, CW	-	17.5	20	dB	
	Cross modulation1	CMV1	35	-	$\begin{aligned} & \mathrm{fd}=55.25 \mathrm{MHz}, \mathrm{CW} \\ & \mathrm{fud}=\mathrm{fd} 6 \mathrm{MHz}, \\ & \text { AM100kHz, } 30 \% \\ & \hline \end{aligned}$	-28	-25	-	dBm	
	Cross modulation2	CMV2	35	-	$\begin{aligned} & \mathrm{fd}=361.25 \mathrm{MHz}, \mathrm{CW} \\ & \text { fud=fd6MHz, } \\ & \text { AM100kHz, } 30 \% \end{aligned}$	-28	-25	-	dBm	
	CS beat1	CS1	35	-	$\begin{aligned} & \mathrm{fp}=241.25 \mathrm{MHz}, \\ & \mathrm{fs}=245.75 \mathrm{MHz} \\ & \mathrm{fc}=244.83 \mathrm{MHz} \\ & \text { AM100kHz}, 30 \% \end{aligned}$	55	60	-	dBc	
	CS beat1	CS2	35	-	$\begin{aligned} & \mathrm{fp}=241.25 \mathrm{MHz} \\ & \mathrm{fs}=245.75 \mathrm{MHz} \\ & \mathrm{fc}=244.83 \mathrm{MHz} \\ & \mathrm{AM} 100 \mathrm{kHz}, 30 \% \end{aligned}$	55	60	-	dBc	
U	Conversion gain3	GvcU3	35	-	fRF=367.25MHz, CW	27	30	33	dB	
H	Conversion gain4	GvcU4	35	-	fRF=801.25MHz, CW	27	30	33	dB	
F	NF1	NFU1	35	-	fRF=367.25MHz, CW	-	11.5	13	dB	
	NF2	NFU2	35	-	fRF=801.25MHz, CW	-	13	15	dB	
	$\begin{aligned} & \text { cross } \\ & \text { modulation1(-) } \end{aligned}$	CMU1(-)	35	-	$\mathrm{fd}=367.25 \mathrm{MHz}, \mathrm{CW}$ fud=fd-6MHz, AM100kHz, 30\%	-31	-28	-	dBm	
	$\begin{aligned} & \text { cross } \\ & \text { modulation1(+) } \end{aligned}$	CMU1 (+)	35	-	$\begin{aligned} & \mathrm{fd}=367.25 \mathrm{MHz}, \mathrm{CW} \\ & \text { fud=fd+6MHz, } \\ & \text { AM100kHz, 30\% } \end{aligned}$	-37	-34	-	dBm	
	```cross modulation2(-)```	CMU2(-)	35	-	$\mathrm{fd}=801.25 \mathrm{MHz}, \mathrm{CW}$ fud=fd-6MHz,   AM100kHz, 30\%	-31	-28	-	dBm	
	$\begin{aligned} & \text { cross } \\ & \text { modulation2(+) } \end{aligned}$	CMU2(+)	35	-	$\begin{aligned} & \mathrm{fd}=801.25 \mathrm{MHz}, \mathrm{CW} \\ & \mathrm{fud}=\mathrm{fd}+6 \mathrm{MHz}, \\ & \text { AM100kHz,30\% } \end{aligned}$	-37	-34	-	dBm	
	CS beat3	CS3	35	-	$\begin{aligned} & \mathrm{fp}=615.25 \mathrm{MHz}, \\ & \mathrm{fs}=627.75 \mathrm{MHz} \\ & \mathrm{fc}=618.83 \mathrm{MHz}, \\ & \text { VolF }=-10 \mathrm{dBm} \end{aligned}$	55	60	-	dBc	

## Mixer and OSC Block

( $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}$ otherwise noted.)

	Item	Symbol	Measure point	Input SG	Condition switches set to position "1" unless otherwise noted	Limits			Unit	Note
						min	typ	max		
B e a	6ch beat	INT6ch	35	-	$\begin{aligned} & \hline \mathrm{fp}=83.25 \mathrm{MHz}, \\ & \mathrm{fs}=87.75 \mathrm{MHz} \\ & \text { VolF }=-10 \mathrm{dBm} \end{aligned}$	55	60	-	dBc	
t	A5ch beat	INTA5ch	35	-	$\begin{aligned} & \mathrm{fp}=91.25 \mathrm{MHz}, \\ & \text { VolF }=-10 \mathrm{dBm} \end{aligned}$	60	65	-	dBc	
	5ch beat	INT5ch	35	-	$\begin{aligned} & \mathrm{fp} 1=83.25 \mathrm{MHz}, \\ & \mathrm{fp}=77.25 \mathrm{MHz} \\ & \text { VolF }=-10 \mathrm{dBm} \\ & \hline \end{aligned}$	60	65	-	dBc	
	PSC beat1	PSC183	35	-	fosc $=183 \mathrm{MHz}$	-	-	-85	dBm	
	PSC beat2	PSC366	35	-	fosc $=366 \mathrm{MHz}$	-	-	-85	dBm	
	PSC beat3	PSC732	35	-	fosc $=732 \mathrm{MHz}$	-	-	-85	dBm	
O	VHF OSC Power supply shift	¢fosc_v	35	-	$\Delta \mathrm{Vcc}=10 \%$	-	-	$\pm 500$	kHz	
C	VHF OSC Swon Drift	$\Delta$ foscv_t	35	-	VccOn 3sec to 5min	-	-	$\pm 500$	kHz	
	VHF OSC C/N1	C/N(V1)	35	-	$\begin{aligned} & \mathrm{fp}=83.25 \mathrm{MHz}, \\ & \text { VoIF }=-10 \mathrm{dBm}+/-50 \mathrm{kHz} \\ & \text { offset } \end{aligned}$	65	-	-	dBc	
	VHF OSC C/N2	C/N(V2)	35	-	$\begin{aligned} & \mathrm{fp}=241.25 \mathrm{MHz}, \\ & \text { VoIF }=-10 \mathrm{dBm}+/-50 \mathrm{kHz} \\ & \text { offset } \end{aligned}$	65	-	-	dBc	
	UHF OSC Power supply shift	dfosc_u	35	-	$\Delta \mathrm{Vcc}=10 \%$	-	-	$\pm 500$	kHz	
	UHF OSC Swon Drift	$\Delta$ foscu_t	35	-	VccOn 3sec to 5min	55	-	-	kHz	
	UHF OSC C/N	$\mathrm{C} / \mathrm{N}(\mathrm{U})$	35	-	$\begin{aligned} & \mathrm{fp}=615.25 \mathrm{MHz}, \\ & \text { VoIF }=-10 \mathrm{dBm}+/-50 \mathrm{kHz} \\ & \text { offset } \end{aligned}$	65	-	-	dBc	

## PLL Block

( $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}$ otherwise noted.)

	Item	Symbol	Measure point	$\begin{aligned} & \text { Input } \\ & \text { SG } \end{aligned}$	Condition switches set to position "1" unless otherwise noted	Limits			Unit	Note
						min	typ	max		
S	High input voltage	ViH	26,27	-	SW26,27=2	2.3	-	Vcc	V	
D	Low input voltage	ViL	26,27	-	SW26,27=2	-	-	1.0	V	
A   1	High input current	liH	26,27	-	$\begin{aligned} & \text { SW25A, 26,27=2 } \\ & \mathrm{Vi}=4.0 \mathrm{~V} \end{aligned}$	-	-	10	$\mu \mathrm{A}$	
S C L	Low input current	liL	26,27	-	$\begin{aligned} & \text { SW25A,26,27=2 } \\ & \text { Vi=0.4V } \end{aligned}$	-	-1	-10	$\mu \mathrm{A}$	
S	Low output voltage	VoSL	27	-	SW25A,27=2 $10=3 \mathrm{~mA}$	-	-	0.4	V	
A	Leakage current	IoSLK	27	-	SW25A,27=2 Vo=5.0V	-	-	10	$\mu \mathrm{A}$	
A	High input current	ViAH	25	-	SW25,25A=2 Vi=5.0V	-	-	600	$\mu \mathrm{A}$	
D	Low input current	liAL	25	-	SW25,25A=2 Vi=0.4V	-	-	-200	$\mu \mathrm{A}$	
P	Output voltage1	Vop1	20,21	-	SW20,21=2 $10=-25 \mathrm{~mA}$	4.6	4.8	-	V	
0	Output voltage2	Vop2	15,22	-	SW15,22=2 $10=-5 \mathrm{~mA}$	4.6	4.8	-	V	
R T	Leakage current	IopLK	15 20~22	-	SW15,20,21,22=2   output "OFF"	-	-	10	$\mu \mathrm{A}$	
$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{P} \end{aligned}$	High output current	IcpH	32	-	SW32=2 Vo=2.5V	$\pm 170$	$\pm 300$	$\pm 400$	$\mu \mathrm{A}$	
	Low output current	IcpL	32	-	SW32=2 Vo=2.5V	$\pm 55$	$\pm 75$	$\pm 115$	$\mu \mathrm{A}$	
	Leakage current	IcpLK	32	-	SW32=2   Vo=2.5V,output "OFF"	-	-	50	nA	
V T	Tuning drive output	lovt	31	-	SW31=2 Vo=0.5V	-	-	2.0	mA	
$\begin{gathered} \mathrm{X} \\ \mathrm{i} \\ \mathrm{n} \end{gathered}$	Operational frequency of Crystal OSC	fxin	29	-		3.2	4.0	4.4	MHz	
	Absolute Value	Rxin	29	-		2.0	-	-	$\mathrm{k} \Omega$	
	Sensitivity of External signal	Vixin	29,22	SG17	SW29=2,Sine wave signal input Data(T2,T1,T0)="01X"	50	-	600	$\begin{aligned} & m V p \\ & -p \end{aligned}$	*14

## Data input Block

( $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}$ otherwise noted.)

Item	Symbol	Measure point	Input SG	Condition switches set to position "1" unless otherwise noted	Limits			Unit	Note
					min	typ	max		
Clock frequency	fSCL	26			0	100	400	kHz	
Bus free time	tBUF	27			1.3	-	-	$\mu \mathrm{sec}$	
Data hold time	tHDSTA	27			0.6	-	-	$\mu \mathrm{sec}$	
SCL LOW hold time	tLOW	26			1.3	-	-	$\mu \mathrm{sec}$	
SCL HIGH hold time	tHIGH	26			0.6	-	-	$\mu \mathrm{sec}$	
Set up time	tSUSTA	26,27			0.6	-	-	$\mu \mathrm{sec}$	
Data hold time	tHDDAT	26,27			0	-	-	$\mu \mathrm{sec}$	
Data set up time	tSUDAT	26,27			100	-	-	nsec	
Rise time	tR	26,27			-	-	300	nsec	
Fall time	tF	26,27			-	-	300	nsec	
Set up time	tSUSTO	26			0.6	-	-	$\mu \mathrm{sec}$	

Timing chart


## VIF Block1

( $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}$ otherwise noted.)

Item	Symbol	Measure point	Input SG	Condition switches set to position "1" unless otherwise noted	Limits			Unit	Note
					min	typ	max		
Video output level	Vodet	46	SG1		0.85	1.15	1.35	Vp-p	
Sync tip voltage	VoSNK	46	SG2		1.1	1.3	1.5	V	
Video S/N	VideoS/ N	46	SG2	5MHz LPF	48	50	-	dB	*1
Video out freq. response	BW	1	SG3		6	7	-	MHz	*2
Input sensitivity	VinMIN	1,37,38	SG4	Vo=-3dB point	-	45	52	$\mathrm{dB} \mu \mathrm{V}$	*3
Max. IF input	VinMAX	1,37,38	SG5	Vo=-3dB point	101	105	-	$\mathrm{dB} \mu \mathrm{V}$	* 4
AGC range	GR	-		GR = VinMAX - Vin MIN	52	60	-	dB	*5
Capture range U	CR-U	46,37,38	SG9		0.6	0.8	-	MHz	*6
Capture range L	CR-L	46,37,38	SG9		1.1	1.5	-	MHz	*7
Inter modulation	IM	1	SG11		32	40	-	dB	*8
D/G	DG	1	SG12		-	3	5	\%	
D/P	DP	1	SG12		-	3	5	deg	
Input impedance	Zin	37,38	-	DC	-	2k	-	$\Omega$	
Input capacitance	Yin	37,38	-	40 MHz	-	5	-	pF	
RF AGC max voltage	V23H	23	SG6		4	4.3	4.6	V	
RF AGC min voltage	V23L	23	SG7		0	0.3	0.6	V	
RFAGC Delay point	Vi23	23,37,38	SG8	@3pin open	82	85	88	$\mathrm{dB} \mu \mathrm{V}$	*9

## VIF Block2

( $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}$ otherwise noted.)

Item	Symbol	Measure point	Input SG	Condition switches se to position "1" unless otherwise noted	Limits			Unit	Note
					min	typ	max		
Freerun frequency	fvco	42	SG17	SW42,29=2,44pin   "GND" Data   (T2, T1, T0="01X")	-500	-	500	kHz	*15
AFT Sensitivity	$\mu$	42	SG10	@360k/360k 0.1险	12	24	36	$\begin{aligned} & \hline \mathrm{mV} / \\ & \mathrm{kHz} \end{aligned}$	*10
AFT high output voltage	V42H	42	SG10	4.3	4.7	5	V		
AFT Low output voltage	V42L	42	SG10	0	0.3	0.7	V		
AFT center voltage	V42C1	42	SG18	frequency $=58.75 \mathrm{MHz}$	2.4	2.5	2.6	V	
AFT center voltage	V42C2	42	SG2	frequency $=45.75 \mathrm{MHz}$	2.4	2.5	2.6	V	

## SIF Block

( $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}$ otherwise noted. $)$

Item	Symbol	Measure point	Input SG	Condition switches set to position "1" unless otherwise noted	Limits			Unit	Note
					min	typ	max		
Audio out level	VoAF	40	SG13	SW3=2 @Pin39:0.22 2 F	500	770	1040	mVrms	
Audio out THD	THDAF	40	SG13	SW3=2 @Pin39:0.22 $\mu \mathrm{F}$	-	0.4	0.9	\%	
AF S/N	AF S/N	40	SG16	SW3=2 @Pin39:0.22 $\mu \mathrm{F}$	51	56	-	dB	*11
Limiting sensitivity	LIM	3,40	SG14	SW3=2 S/N=30dB Point	-	50	55	$\mathrm{dB} \mu \mathrm{V}$	*12
AMR	AMR	40	SG15	SW3=2	44	50	-	dB	*13
QIF output	VoQIF	41	SG16	SW3=2	86	92	-	$\mathrm{dB} \mu \mathrm{V}$	

## Measurement diagram



## M61140FP

## INPUT SIGNAL

SG	500hm termination			
1	$\mathrm{f} 0=45.75 \mathrm{MHz}$	$\mathrm{V}=90 \mathrm{~dB} \mu \mathrm{~V}$	$\mathrm{fm}=20 \mathrm{kHz}$	AM $=77.8 \%$
2	$\mathrm{f} 0=45.75 \mathrm{MHz}$	$\mathrm{V}=90 \mathrm{~dB} \mu \mathrm{~V}$	CW	
3	$\mathrm{f}^{\mathrm{f} 1=45.75 \mathrm{MHz}} \mathrm{f}$ 2=Frequency	$\mathrm{Vi}=90 \mathrm{~dB} \mu \mathrm{~V}$	CW	Jmixed signal
4	$\mathrm{f} 0=45.75 \mathrm{MHz}$	Level Variable	$\mathrm{fm}=20 \mathrm{kHz}$	AM=77.8\%
5	$\mathrm{f0}=45.75 \mathrm{MHz}$	Level Variable	$\mathrm{fm}=20 \mathrm{kHz}$	AM $=14.0 \%$
6	$\mathrm{f} 0=45.75 \mathrm{MHz}$	$\mathrm{V}=80 \mathrm{~dB} \mu \mathrm{~V}$	CW	
7	$\mathrm{f} 0=45.75 \mathrm{MHz}$	$\mathrm{V}=110 \mathrm{~dB} \mu \mathrm{~V}$	CW	
8	$\mathrm{f} 0=45.75 \mathrm{MHz}$	Level Variable	CW	
9	$\mathrm{f} 0=F$ requency Variable	$\mathrm{Vi}=90 \mathrm{~dB} \mu \mathrm{~V}$	$\mathrm{fm}=20 \mathrm{kHz}$	AM=77.8\%
10	$\mathrm{f0}=$ Frequency Variable	$\mathrm{V}=90 \mathrm{~dB} \mu \mathrm{~V}$	CW	
11	$f 1=45.75 \mathrm{MHz}$	$\mathrm{V}=90 \mathrm{~dB} \mu \mathrm{~V}$	CW	
	f2 $=42.17 \mathrm{MHz}$	$\mathrm{Vi}=80 \mathrm{~dB} \mu \mathrm{~V}$	cW	mixed signal
	$f 3=41.25 \mathrm{MHz}$	$\mathrm{Vi}=80 \mathrm{~dB} \mu \mathrm{~V}$	CW	
12	$\mathrm{f} 0=45.75 \mathrm{MHz}$	Sync Tip Level 90dB $\mu$ 10 stair-steps waveform	TV moduration=87.5\%	
13	$\mathrm{f0}=4.5 \mathrm{MHz}$	$\mathrm{Vi}=90 \mathrm{~dB} \mu \mathrm{~V}$	$\mathrm{fm}=1 \mathrm{kHz}$	+/- 25kHz dev
14	$\mathrm{f0}=4.5 \mathrm{MHz}$	Level Variable	$\mathrm{fm}=1 \mathrm{kHz}$	+/-25kHz dev
15	$\mathrm{f0}=4.5 \mathrm{MHz}$	$\mathrm{Vi}=90 \mathrm{~dB} \mu \mathrm{~V}$	$\mathrm{fm}=1 \mathrm{kHz}$	AM=30\%
16	$\mathrm{f} 0=4.5 \mathrm{MHz}$	$\mathrm{Vi}=90 \mathrm{~dB} \mu \mathrm{~V}$	CW	
17	$\mathrm{f0}=4.0 \mathrm{MHz}$	Level Variable	CW	
18	$\mathrm{f} 0=58.75 \mathrm{MHz}$	$\mathrm{V}=90 \mathrm{~dB} \mu \mathrm{~V}$	CW	

## Measurement of electrical characteristic Notes

1. Video $\mathrm{S} / \mathrm{N}$

Input SG2 to VIF IN and measure the video out (Pin 46) noise in r.m.s. at TP46B through a $5 \mathrm{MHz}(-3 \mathrm{~dB})$ L.P.F.

$$
\mathrm{S} / \mathrm{N}=20 \log \left(\frac{0.7 \times \text { Vodet }}{\text { NOISE }}\right)(\mathrm{dB})
$$

2. Video Band Width
3. Measure the 1 MHz component level of Video output TP1 with a spectrum analyzer when SG 3 (f2=44.75MHz) is input to VIF IN. At that time, measure the voltage at TP44 with SW8, set to position 2, and then fix V8 at that voltage.
4. Reduce f2and measure the value of (f2-f1) when the (f2-f1) component level reaches -3 dB from the 1 MHz component level as shown below.

5. Input sensitivity

Input SG4 (Vi=90dB $\mu$ ) to VIF IN, and then gradually reduce Vi and measure the input level when the 20 kHz component of Video output TP46A reaches -3dB from Vo det level.
4. Maximum Allowable Input

1. Input SG5 $(\mathrm{Vi}=90 \mathrm{~dB} \mu)$ to VIF IN, and measure the level of the 20 kHz component of Video output.
2. Gradually increase the Vi of SG and measure the input level when the output reaches -3 dB .
3. AGC control Range

GR=VinMAX-VinMIN (dB)
6. Capture range U

1. Increase the frequency of SG9 until the VCO is out of locked-oscillation
2. And decrease the frequency of SG9 and measure the frequency fU when the VCO is locked. CR-U=fU-45.75 (MHz)
3. Capture range L
4. Decrease the frequency of SG9 until the VCO is out of locked-oscillation.
5. And increase the frequency of SG9 and measure the frequency fL when the VCO is locked. CR-L=45.75-fL (MHz)
6. Inter modulation
7. Input SG11 to VIF IN, and measure video output TP9 with an oscilloscope.
8. Adjust AGC filter voltage V 44 so that the minimum DC level of the output waveform is 1.5 V .
9. At that time, measure TP1 with a spectrum analyzer The inter modulation is defined as a difference between 0.92 MHz and 3.58 MHz frequency components.
10. RF AGC Operating Voltage: Input SG8 to VIF IN and gradually reduce Vi and then measure the input level when RF AGC output reaches $1 / 2 \mathrm{Vcc}$, as shown below.

11. AFT sensitivity, Maximum AFT voltage, Minimum AFT voltage
12. Input SG10 to VIF IN, and set the frequency of SG10 so that the voltage of AFT output TP42 is 3(V). This frequency is named $f(3)$.
13. Set the frequency of SG10 so that the AFT output voltage is $2(\mathrm{~V})$. This frequency is named $f(2)$.
14. IN the graph shown below, maximum and minimum DC voltage are V 42 H and V 42 L , respectively.


## 11. AF S/N

1. Input SG19 to LIM IN, and measure the output noise level of Audio output (TP40). This level is named VN.

$$
\mathrm{S} / \mathrm{N}=20 \log \left(\frac{\mathrm{VoAF}}{\mathrm{VN}}\right)(\mathrm{dB})
$$

12. Limiting Sensitivity
13. Input SG14 to LIM IN, and measure the 1 kHz component level of AF output TP40.
14. Input SG17 to LIM IN, and measure the noise level of AF output TP40 .
15. The input limiting sensitivity is defined as the input level when the difference between each 1 kHz components of audio output (TP40) is 30 dB , as shown below.


## 13. AM Rejection

1. Input SG15 to LIM IN, and measure the output level of Audio output (TP40). This level is named VAM.
2. AMR is

$$
\begin{equation*}
A M R=20 \log \left(\frac{\operatorname{Vo~AF}(\mathrm{mVrms})}{\operatorname{VAM}(\mathrm{mVrms})}\right) \tag{dB}
\end{equation*}
$$

14. Xin sensitivity of external signal
15. Input data that Control byte data $\mathrm{CP}, \mathrm{T} 2, \mathrm{~T} 1, \mathrm{~T} 0$ is " 0100 " and Rsa,Rsa is" 01 "
16. The Reference frequency is output to Pin 22 , measure the frequency with counter.
17. Input sensitivity is defined as the input level when the frequency is less than plus-or-minus 1 ppm of 31.25 kHz . 15. Freerun frequency
18. Input data that Control byte data $\mathrm{CP}, \mathrm{T} 2, \mathrm{~T} 1, \mathrm{~T} 0$ is " 01 X ".
19. The Reference frequency is output to Pin 42 , measure the frequency with counter. This frequency is named fmoni.

Freerun frequency (foUS) is $52.9524[\mathrm{MHz}]$ - fmoni x $9[\mathrm{MHz}]$
Freerun frequency (foJP) is $65.9512[\mathrm{MHz}]$ - fmoni x $9[\mathrm{MHz}]$

## Application board example



## Application Example



## Application Note

*1 2SC2735 equivalent made by Renesas
*2 $\quad 45.75 \mathrm{MHz}$ SAW Filter made by EPCOS
*3 4.5 MHz Trap made by Murata
*4 4.5 MHz B.P.F. made by Murata
*5 HC-49/U equivalent made by Daishinku. Load capacitance $=20 \mathrm{pF}$, Motinal resistance: Less $300 \Omega$
*6,7 HVC306B equivalent made by renesas
*8 MA2S77 equivalent made by MATSUSHITA
*9 $\quad 0.1 \mathrm{~mm} 3 \mathrm{~mm} \phi 6 \mathrm{t} \times 2$ P886ANS-0194VN made by TOKO

* $10 \quad 0.5 \mathrm{~mm} 2.4 \mathrm{~mm} \phi 2.5 \mathrm{t}$
*11 $0.5 \mathrm{~mm} 2.4 \mathrm{~mm} \phi 2.5 \mathrm{t}$
* $12 \quad 0.5 \mathrm{~mm} 2.4 \mathrm{~mm} \phi 8.5 \mathrm{t}$
*13,14 The bypass capacitor of Vcc is arranged near the LogicGND pin.
*15 In order to mitigate the surroundings lump by the VIF input, the balanced connection from a SAW filter to the VIF input pin of 37.38 recommends a putter which serves as a 1 t coil by Tip C or the jumper.
*16-19 In order to stop digital beat which goes via the port output from Logic Vcc, bypass capacitor arranged near the port output pin.
*21 It is high impedance. keep away from VideodetOUT and EQ F/B pin.


## Notes about the handling of IC

*20 The direct power supply impression to Vt terminal is forbidden. When power supply impression is required, please impress through the resistance for current restrictions. Depending on the case, it is drive current from 31 pin, and excessive collector current flows and breaks to an external transistor.
Because there is a possibility of also destroying IC by the destruction.

* Since this IC is using the detailed process, be careful of serge enough.

Especially careful $1,7,8,9,10,25,26,27,32,48$ pins.

## Package Dimensions

48P6Q-A


RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Blag., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

## Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
publication of these materials, and are subject to change by Renesas Technology Corp. without notice algorithms represents information on products at the time of herefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor
2. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
3. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technogy Corp or an authorized Renesas Technology Corp product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
4. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
5. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein

## RENESAS SALES OFFICES

Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501
Renesas Technology Europe Limited.
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628) 585 100, Fax: <44> (1628) 585900
Renesas Technology Europe GmbH
Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 380700 , Fax: <49> (89) 9293011

## Renesas Technology Hong Kong Ltd.

7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2375-6836
Renesas Technology Taiwan Co., Ltd.
FL 10, \#99, Fu-Hsing N. Rd., Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
26/F., Ruijin Building, No. 205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

## Renesas Technology Singapore Pte. Ltd

1, Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

