M61303FP

IIC BUS controlled 3channel video pre-amplifier for LCD display monitor.

DESCRIPTION

M61303FP is integrated Circuit for LCD Display Monitor.It is controlled IIC BUS and Band Wide is 180MHz.

It includes OSD Blanking ,OSD Mixing,Wide Band Amplifier,Main/Sub Contrast Main/Sub Brightness ,and 2 Input routes.

Vcc Voltage is 5V and Flat package is used. then it is the suitable to LCD monitor.

FEATURES

1.Frequency : RGB 180MHz(at -3dB)

Band Width OSD 80MHz

2.Input : RGB Input dy namic range:Max1VP-Ppositiv e

2 input routes is changed by IIC BUS RGB OSD 3.5VP-P 5.0VP-P (positive) OSD BLK 3.5VP-P 5.0VP-P (positive)

3.Output : RGB 2.2VP-P (Max)

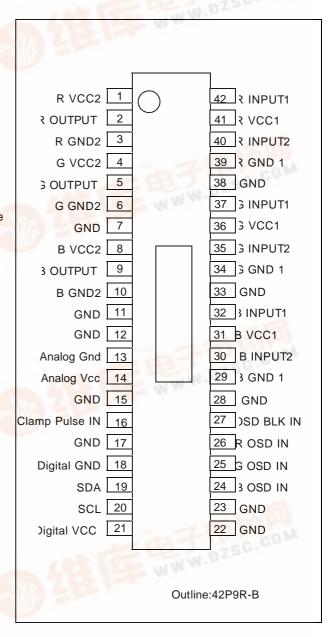
OSD 2.0VP-P (Max)

Output dynamic range 0.5 -2.2V

It can drive 14pF

4.Contrast : Both of sub and main contrast

5.Brightness: Both of sub and main contrast


are controlled by IIC Bus(8bit).

Control Range :0.5V ~2.2V.

6.OSD Adjust :2 Control Ranges (Max1VP-P or Max2VP-P)

are able to be changed by IIC Bus.

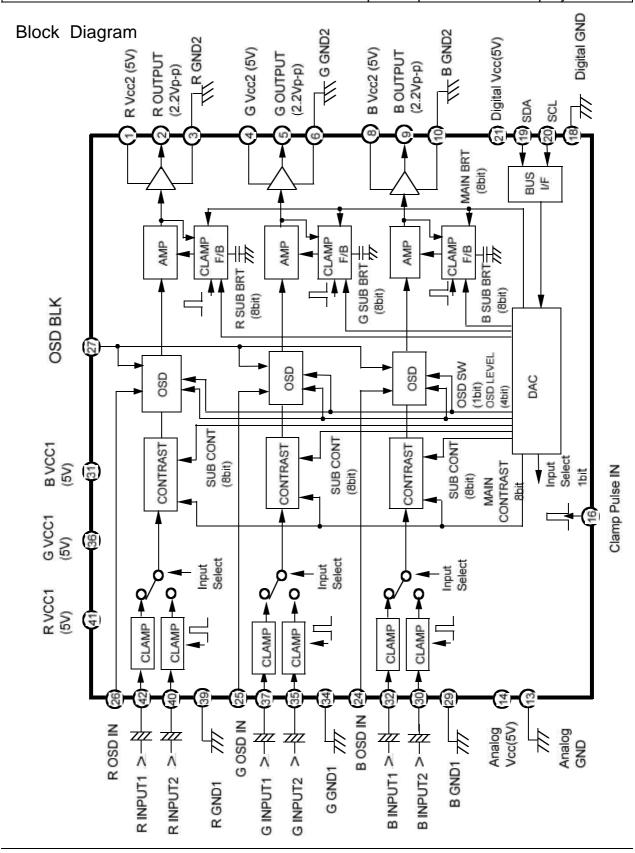
PIN CONFIGURATION

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range 4.7V

5.3V

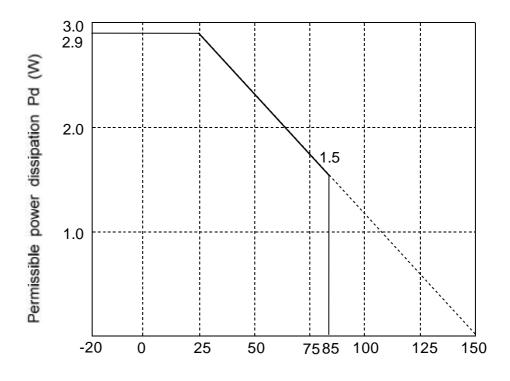
Rated Supply Voltage 5.0V


Consumption of electricity 800mW

22

M61303FP

IIC BUS controlled 3channel video pre-amplifier for LCD display monitor.



IIC BUS controled 3channel video pre-amplifier for LCD display monitor.

Absolute Maximum Rating (Ambient temperature: 25°C)

Parameter	Symbol	Rating	Unit
Supply voltage	Vcc	6.0	V
Power dissipation	Pd	2900	mW
Ambient temperature	Topr	-20 to +85	°C
Storage temperature	Tstg	-40 to +150	°C
Recommended supply	Vopr	5.0	V
voltage range	Vopr'	4.7 to 5.3	V

Thermal Derating Curve

Ambient temperature Ta(°C)

M61303FP

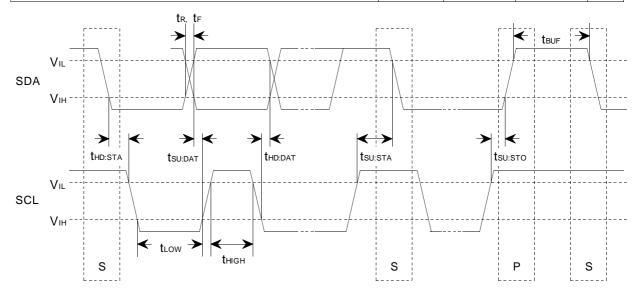
IIC BUS controled 3channel video pre-amplifier for LCD display monitor.

BUS CONTROL TABLE

(1) Slave address:

	D7	D6	D5	D4	D3	D2	D1	R/W	
M61303FP	1	0	0	0	1	0	0	0	=88H

(2) Each function's sub address:


NO	function	bit	sub	Data	Byte						
			add.	D7	D6	D5	D4	D3	D2	D1	D0
4	Main contract	0	0011	A07	A06	A05	A04	A03	A02	A01	A00
1	Main contrast	8	00H	0	1	0	0	0	0	0	0
2	Sub contrast R	8	01H	A17	A16	A15	A14	A13	A12	A11	A10
	Oub contrast it	0	υп	1	0	0	0	0	0	0	0
3	Sub contrast G	8	02H	A27	A26	A25	A24	A23	A22	A21	A20
٦	Sub contrast G	0	0211	1	0	0	0	0	0	0	0
1	Sub contrast B		03H	A37	A36	A35	A34	A33	A32	A31	A30
4	oub contrast b	8	USIT	1	0	0	0	0	0	0	0
5	Main briabt	8	04H	A47	A46	A45	A44	A43	A42	A41	A40
Э	Main bright	Ö	U4H	1	0	0	0	0	0	0	0
6	Sub bright R		٥٥١١	A57	A56	A55	A54	A53	A52	A51	A50
0	Sub blight K	8	05H	1	0	0	0	0	0	0	0
7	Cub bright C	8	06H	A67	A66	A65	A64	A63	A62	A61	A60
	Sub bright G	0	ООП	1	0	0	0	0	0	0	0
8	Cub bright D		0711	A77	A76	A75	A74	A73	A72	A71	A70
0	Sub bright B	8	07H	1	0	0	0	0	0	0	0
	000 11		0011	-	-		_	A83	A82	A81	A80
9	OSD level	4	08H	0	0	0	0	0	0	0	0
40	INPUT SW		0011	-	-	-	-	-	-	-	A90
10	INPUT SVV	1	09H	0	0	0	0	0	0	0	0
4.4	000 014	1 0AH				-		_			AA0
11	OSD SW	1	UAH	0	0	0	0	0	0	0	0

M61303FP

IIC BUS controled 3channel video pre-amplifier for LCD display monitor.

I²C BUS CONTROL SECTION SDA,SCL CHARACTERISTICS

parameter	symbol	MIN	MAX	unit
min. input LOW voltage.	VIL	-0.5	1.5	V
max. input HIGH v oltage.	ViH	3.0	5.5	V
SCL clock frequency.	fscL	0	100	KHz
Time the bus must be free before a new transmission can start.	t BUF	4.7	-	us
Hold time start condition.After this period the first clock pulse is generated.	thd:STA	4.0	-	us
The LOW period of the clock.	tLow	4.7	-	us
The HIGH period of the clock.	t HIGH	4.0	-	us
Set up time for start condition. (Only relevant for a repeated start condition.)	tsu:STA	4.7	-	us
Hold time DATA.	thd:dat	0	-	us
Set-up time DATA.	tsu:dat	250	-	ns
Rise time of both SDA and SCL lines.	tr	-	1000	ns
Fall time of both SDA and SCL lines.	tF	-	300	ns
Set-up time for stop condition.	tsu:sto	4.0	-	us

IIC BUS controlled 3 channel video pre-amplifier for LCD display monitor.

If SW connect is not designated RGB Input SW :
SW(30,35,40)=a(b) SW(32,37,42)=b (a),SW(2,5,9,16,19,20,24,25,26,27)= a

Vcc=5V Ta=25 °C

	5vv (30,33,40)=a	(1) 311	1(32,37		(a),SW(2,5,9,16	, i IJ,.	∠∪,∠∠	+,∠ე,		7)= 2 S CTI)						9	Standar	d			
No	parameter	Symbol	Test	RGB Input	SW Connect	00H Main	01H Sub	02H Sub	03H Sub	04H Main	05H Sub	06H	07H Sub	08H	09H		AH		- carrual		Unit	re-	
	24.40101	2,.11001	Point	Signal		cont	cont 1	cont 2	cont 3	brt	brt1	Sub brt2	brt3	OSD Adj	SW		SW	MIN	TYP	MAX	5.111	mark	
1	Circuit current1	lcc1	IA	_	RGBInput SW =a(ALL)	A6H 166	A6H 166	A6H 166	A6H 166	00H 0	00H 0	00H 0	00H 0	00H 0	-	1	-	_	155	185	mA		
2	Output dynamic range	Vomax	OUT	SG2	-	V	V	¥	\	Variable	Variable	Variable	Variable					2.2	_	_	Vp-p		
3	Maximum input1	Vimax1	IN OUT	SG2 Amplitude Variable	₩	7FH 127	7FH 127	7FH 127	7FH 127	40H 64	7FH 127	7FH 127	7FH 127					1.0	_	_	Vp-p	<u> </u>	
4	Maximum input2	Vimax2	IN OUT	SG2 Amplitude Variable	SW(30,35,40)=b SW(32,37,42)=a	$ \downarrow$	\downarrow	$ \downarrow$	V									1.0	_	_	Vp-p	Ī	
5	Maximum gain	Gv	OUT	SG1	-	FFH 255	FFH 255	FFH 255	FFH 255									11.9	13.9	15.9	dB		
6	Relative maximum gain	ΔGv	_	_		_	_	_	_									0.8	1.0	1.2	_		
7	Main contrast control characteristics 1	VC1	OUT	SG1		C8H 200	7FH 127	7FH 127	7FH 127									6.4	7.9	9.4	dB		
8	Main contrast control characteristics 2	VC2	OUT	SG1		64H 100												2.3	4.1	5.9	dB		
9	Main contrast control characteristics 3	VC3	OUT	SG1		00H 0	V	V	V									0.2	0.4	0.6	Vp-p		
10	Sub contrast control characteristics 1	VSC1	OUT	SG1		7FH 127	C8H 200	C8H 200	C8H 200							t		6.3	7.8	9.4	dB		
11	Sub contrast control characteristics 2	VSC2	OUT	SG1			64H 100	64H 100	64H 100						\dagger		T	2.6	4.3	6.0	dB		
12	Sub contrast control characteristics 3	VSC3	OUT	SG1			00H 0	00H 0	00H 0									0.2	0.4	0.6	Vp-p		
13	Main/sub contrast control characteristics	VMSC	OUT	SG1		A6H 166	A6H 166	A6H 166	A6H 166									1.7	2.0	2.3	Vp-p		
14	Main brightness control characteristics 1	VB1	OUT	_	RGBInput SW =a(ALL)	A6H 166	A6H 166	A6H 166	A6H 166	7FH 127								1.3	1.7	2.0	V		
15	Main brightness control characteristics 2	VB2	OUT	_	-()					00H		V						0.4	0.6	0.8	V		
16	Sub brightness control characteristics 1	VSB1	OUT	_						7FH 127	FFH 255	FFH 255	FFH 255					1.7	2.2	2.6	V		
17	Sub brightness control	VSB2	OUT	_						127	7FH 127	7FH 127	7FH 127					1.3	1.7	2.0	V		
18	characteristics 2 Sub brightness control	VSB3	OUT	_							00H	00H 0	00H 0			,	\	0.7	1.0	1.3	V		
19	characteristics 3 Frequency characteristics 1	ΔFC1	OUT	SG3	_	Variable				40H 64	7FH	7FH	7FH	00H	-		_	-3.0	0	3.0	dB	refer-	
20	(50MHz-2Vpp) Frequency relative characteristics 1	ΔFC1	_	_		A6H				64	127	127	127	0			t	-1.0	0	1.0	dB	ence	
21	(180MHz-2Vpp) Frequency characteristics 2	FC2	OUT	SG3		166											-	-4.0	-3.0	1.0	dB		
22	(50MHz-2Vpp) Frequency relative characteristics 2	ΔFC2	_	_		\vdash	\vdash						\vdash		+	+	\parallel	-1.0	0	1.0	dB		
23	(50MHz-2Vpp) Frequency characteristics 3	FC3	OUT	SG3									\vdash		+	+	$\frac{1}{1}$		0	1.0	dB		
	(180MHz-1Vpp) Frequency relative characteristics 3	ΔFC3				₩ 37H	\vdash						\vdash	\vdash	+	+	-	-1.0			dB		
24	(180MHz-1Vpp) Frequency	FC4	_	_	Y	55							\vdash		+	-		-1.0	0	1.0			
25	characteristics 4 (180MHz-2Vpp-Cap) Frequency relative		OUT	SG3	SW(2,5,9)=b	A							\vdash				-	-4.0	-3.0	1.0	dB		
26	characteristics 4 (180MHz-2Vpp-Cap) Crosstalk 1 input1 - 2	ΔFC4	OUT(2)	_	SW(42)=b,Other SW=a	A6H 166	\vdash						\vdash		001	<i>!</i>		-1.0	0	1.0	dB		
27	50MHz-1	INCT1	OUT(5) OUT(9) OUT(2)	SG3	SW(37)=b,Other SW=a SW(32)=b,Other SW=a	\Box									0			_	-35	-30	dB		
28	Crosstalk 1' input1 - 2 50MHz-1	INCT1'	OUT(5) OUT(9) OUT(2)	SG3	SW(40)=b,Other SW=a										01	/	\downarrow	_	-15	-10	dB		
29	Crosstalk 2 input1 - 2 50MHz-2	INCT2	OUT(5) OUT(9)	SG3	SW(35)=b,Other SW=a SW(30)=b,Other SW=a										1		_	_	-35	-30	dB		
30	Crosstalk 2' input1 - 2 50MHz-2	INCT2'	OUT(2) OUT(5) OUT(9)	SG3	↓ ↓	\	V	\	¥	¥	¥	V	¥	V	١	/	¥	_	-15	-10	dB	V	
																						<u> </u>	
																						' <u></u>	

IIC BUS controlled 3channel video pre-amplifier for LCD display monitor.

If SW connect is not designated RGB Input SW:

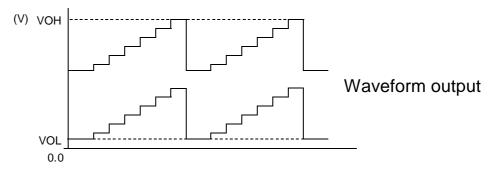
SW(30,35,40)=a(b) SW(32,37,42)=b (a),SW(2,5,9,16,19,20,24,25,26,27)=a

Vcc=5V Ta=25 °C

	5VV(30,35,40)=a	(b) 5w	(32,37	,42)=D	(a),5 $(2,5,9,16)$	2,5,9,16,19,20,24,25,26,27)= a																		
No	parameter	Symbol	Test Point	RGB Input Signal	SW Connect	00H Mair cont	s	1H sub ont	02H Sub cont 2	03H Sub cont 3	04H Main brt	05H	06H Sub	07H Su brt	ıb	08H OSD Adj	09H INPU SW	0AH OSD SW	MIN	Standar TYP	MAX	Unit	re- ma	
31	Crosstalk 1 between RGB ch 50MHz-1	CHCT1	OUT	SG3	SW(42)=b,OtherSW=a	A6H 166	A6		A6H 166	A6H 166	40H 64	7FH 127	7FH 127	7FI 127		00H 0	_	_	_	-25	-20	dB	refe enc	
32	Crosstalk 1`between RGB ch 180MHz-1	CHCT1'	OUT	SG3	*														_	-15	-10	dB		
33	Crosstalk 2 between RGB ch 50MHz-2	CHCT2	OUT	SG3	SW(37)=b,OtherSW=a														_	-25	-20	dB		
34	Crosstalk 2' between RGB ch 180MHz-2	CHCT2'	OUT	SG3	—														_	-15	-10	dB		
35	Crosstalk 3 between RGB ch 50MHz-3	СНСТЗ	OUT	SG3	SW(32)=b,OtherSW=a														_	-25	-20	dB		
36	Crosstalk 3' between RGB ch 50MHz-3	СНСТ3'	OUT	SG3															_	-15	-10	dB		
37	Pulse characteristics Tr1	Tr1	OUT	SG1	_														_	1.1	-	nS		
38	Relative pulse characteristics Tr1	∆ _{Tr1}	-	_															-0.8	0.0	0.8	nS		
39	Pulse characteristics Tf1	Tf1	OUT	SG1															_	1.1	-	_		
40	Relative pulse characteristics Tf1	∆ _{Tf1}	_	_	V														-0.8	0.0	0.8	_		
41	Pulse characteristics Tr2	Tr2	OUT	SG1	SW(2,5,9)=b														_	2.0	_	nS		
42	Relative pulse characteristics Tr2	T 4 2≥	_	_	_														-0.8	0.0	0.8	nS		
43	Pulse characteristics Tf2	Tf2	OUT	SG1	SW(2,5,9)=b														_	2.0	_	_		
44	Relative pulse characteristics Tf2	∆ _{Tf2}	ı	_	_														-0.8	0.0	0.8	_	٧	
45	Clamp pulse threshold voltage	VthCP	OUT	SG1															1.5	2.0	2.5	V	<u> </u>	
46	Clamp pulse minimum width	WCP	OUT	SG1		¥	١	/	V	V	¥	\ \	₩	V	′	V		V	0.2	0.5	1	uS		
47	OSD Pulse characteristics Tr	OTr	OUT	_	SW(24,25,26,27)=b	00H 0		0H 0	00H 0	00H 0	40H 64	7FH 127		7F 12		0FH 15		00H 0	_	3.0	6.0	ns	refe	
48	OSD Pulse characteristics Tf	OTf	ı	_		V	١	V	V	V						V		V	_	3.0	6.0	ns	١	1
49	OSD adjust control characteristics 1	Oaj1	OUT	_		A6F 166		66 •	A6H 166	A6H 166						00H 0		00H 0	0	0	0.2	Vp-p		
50	OSD adjust control characteristics 2	Oaj2	OUT	_												01H 1		00H 0	0.9	1.2	1.5	Vp-p	<u> </u>	
51	OSD adjust control relative characteristics 2	Oaj <u>&</u>	_	_												_		_	0.75	1.0	1.25	_	<u> </u>	
52	OSD adjust control characteristics 3	Oaj3	OUT	_												0FH 15		00H 0	1.8	2.1	2.5	Vp-p		
53	OSD adjust control relative characteristics 3	O A ;3	_	_												<u>-</u>	-	01H	0.75	1.0	1.25	_		
54	OSD adjust control characteristics 4	Oaj4	OUT	_					\downarrow					\parallel		0		1	0	0	0.2	Vp-p	<u> </u>	
55	OSD adjust control characteristics 5	Oaj5	OUT	_												01H 1	-	01H 1	0.4	0.6	0.8	Vp-p		
56	OSD adjust control relative characteristics 5	O <u>Ai</u> 5	-	_										\parallel		OFH	-	01H	0.75	1.0	1.25	_		
57	OSD adjust control characteristics 6	Oaj6	OUT	_										\parallel		15	-	1	0.9	1.2	1.5	Vp-p		
58	OSD adjust control relative characteristics 6	O A j6	-	_	SW(24,25,26)=a											_ _	\downarrow	<u> </u>	0.75	1.0	1.25	_		
59	OSD BLK characteristics	OBLK	OUT	_	SW(24,25,26)=a SW(27)=b								$\perp \mid$	\parallel					0.0	0.1	0.3	Vpp	<u> </u>	
60	OSD BLK relative characteristics	О≰ДК	_	_	\									$\parallel \parallel$		V 0FH		00H	-0.15	0.0	0.15	V		
61	OSD input threshold voltage	VthOSD	OUT	_	SW(24,25,26,27)=a									\parallel		15		0	2.0	2.5	3.0	V		
62	OSD BLK input threshold voltage	VthBLK	OUT	SG1	SW(27)=b	¥	١	1	¥	\ \	¥	\	\ \	₩	′	V	V	V	2.0	2.5	3.0	V		

M61303FP

IIC BUS controlled 3 channel video pre-amplifier for LCD display monitor.


If SW connect is not designated RGB Input SW :
SW(30,35,40)=a(b) SW(32,37,42)=b (a),SW(2,5,9,16,19,20,24,25,26,27)= a

Vcc=5V Ta=25 °C

`	SW(30,35,40)=a	(b) SW	(32,37	′,42)=b	(a),SW(2,5,9,16	5,19,	20,2	4,25										v ra-			
				RGB		00H	01H	02H	BU:	S CTI 04H	05H	06H	07H	08H	09H	0AH	;	Standar	d I	.	re-
No	parameter	Symbol	Test Point	Input Signal	SW Connect	Main	Sub	Sub	Sub cont 3	Main brt	Sub brt1	Sub brt2	Sub brt3	OSD Adj	INPUT SW	OSD	MIN	TYP	MAX	Unit	mark
63	Pin19 Input Current H	I19H	I 19	I	SW(19)=b V19=5V	_	_	_	_	_	_	_	_	_	_	_	-1.0	0.0	_	uA	L
64	Pin19 Input Current L	I19L	I 19	ı	SW(19)=b V19=0V												_	0.6	2.0	uA	L
65	Pin20 Input Current H	I 20H	l 20	ı	SW(20)=b V20=5V												-1.0	0.0	_	uA	L
66	Pin20 Input Current L	I20L	120	-	SW(20)=b V20=0V												_	0.6	2.0	uA	
67	Pin24 25 26 Input Current H	losdh	24 25 26	-	SW(24,25,26)=b VOSD=5V												-2.0	-1.3	_	mA	
68	Pin24 25 26 Input Current L	losdl	24 25 26	1	SW(24,25,26)=b VOSD=0V												_	1.3	2.0	mA	
69	Pin27 Input Current H	I 27H	l 27	ı	SW(27)=b V27=5V												-2.0	-1.3	_	mA	<u> </u>
70	Pin27 Input Current L	l27L	l 27	ı	SW(27)=b V27=0V	¥	\	¥	V	¥	V	V	¥	¥	V	¥	_	1.3	2.0	mA	L
																					L
																					L
																					L
																					L
																					<u></u>
																					<u> </u>
																					Ì
																					<u> </u>
		<u> </u>				1	1		<u> </u>	1			<u> </u>	l	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>		

IIC BUS controlled 3channel video pre-amplifier for LCD display monitor.

- Measuring conditions are as listed in supplementary Table.
 Measured with a current meter at test point IA.
- 2) Decrease Main Bat or Sub Bat gradually, and measure the voltage when the bottom of waveform output is distorted. The voltage is called VOL. Next, increase V30 gradually, and measure the voltage when the top of waveform output is distorted. The voltage is called VOH.Voltage Vomax is calculated by the equation below: Vomax = VOH-VOL

- 3) Increase the input signal(SG2) at Input1 amplitude gradually, starting from 700mVp-p.

 Measure the amplitude of the input signal when the output signal starts becoming distorted.
- 4) Increase the input signal(SG2) at Input amplitude gradually, starting from 700mVp-p.

 Measure the amplitude of the input signal when the output signal starts becoming distorted.
- 5) Input SG1, and read the amplitude output at OUT(2,5,9). The amplitude is called VOUT(2,5,9). Maximum gain GV is calculated by the equation below:

$$GV = 20 LOG \frac{VOUT}{0.7} (dB)$$

6) Relative maximum gain Δ GV is calculated by the equation below:

$$\Delta$$
GV = VOUT(2) / VOUT(5), VOUT(5) / VOUT(9), VOUT(9) / VOUT(2)

7) Measuring the amplitude output at OUT(2,5,9). The measured value is called VOUT(2,5,9).

VC1=20 LOG
$$\frac{\text{VOUT}}{0.7}$$
 (dB)

- 8) Measuring condition and procedure are the same as described in Note7.
- 9) Measuring condition and procedure are the same as described in Note7.
- 10) Measuring condition and procedure are the same as described in Note7.
- 11) Measuring condition and procedure are the same as described in Note7.
- 12) Measuring condition and procedure are the same as described in Note7.
- 13) Measuring condition and procedure are the same as described in Note7.

M61303FP

IIC BUS controlled 3channel video pre-amplifier for LCD display monitor.

- 14) Measure the DC voltage output at OUT(2,5,9). The measured value is called VB1.
- 15) Measuring condition and procedure are the same as described in Note14.
- 16) Measuring condition and procedure are the same as described in Note14.
- 17) Measuring condition and procedure are the same as described in Note14.
- 18) Measuring condition and procedure are the same as described in Note14.
- First, SG3 to 1MHz is as input signal.

 Control the main contrast in order that the amplitude of sine wave output is 2.0Vp-p.Control the brightness in order that the bottom of sine wave output is 1.0V.By the same way, measure the output amplitude when SG3 to 50MHz is as input signal. The measured value is called VOUT(2,5,9).

 Frequency characteristics FC1(2,5,9) is calculated by the equation below:

- 20) Relative characteristics <u>△</u>FC1 is calculated by the difference in the output between the channels.
- 21) Measuring condition and procedure are the same as described in Note19, expect SG3.
- 22) Relative characteristics △ FC2 is calculated by the difference in the output between the channels.
- SG3 to 1MHz is as input signal. Control the main contrast in order that the amplitude of sine wave output is 1.0Vp-p.By the same way, measure the output amplitude when SG3 to 180MHz is as input signal.
- 24) Relative characteristics △FC3 is calculated by the difference in the output between the channels.
- 25) Change OUT SW from a to b .Measuring condition and procedure are the same as described in Note19
- Relative characteristics Δ FC4 is calculated by the difference in the output between the channels.

M61303FP

IIC BUS controlled 3channel video pre-amplifier for LCD display monitor.

27) Input SG3 (50MHz) to pin42 only, set Input SW of IIC BUS to 0 and then measure the waveform amplitude output at OUT(2). The measured value is called VOUT(2). On equal terms set Input SW of IIC BUS to 1. And then measure the waveform amplitude output at OUT(2). Crosstalk INCT1 is calculated by the equation below:

INCT1=
$$20 LOG \frac{VOUT(2)'}{VOUT(2)}$$
 (dB)

Similarly measure the waveform amplitude output at OUT(5) when signal input only Pin37 and OUT when signal input only Pin32 and calculate crosstalk

- 28) Measuring condition and procedure are the same as described in Note27, expect SG3 to 180MHz.
- 29) Input SG3 (50MHz) to pin40 only, set Input SW of IIC BUS to 1 and then measure the waveform amplitude output at OUT(2). The measured value is called VOUT(2). On equal terms set Input SW of IIC BUS to 0. And then measure the waveform amplitude output at OUT(2)'. Crosstalk INCT2 is calculated by the equation below:

INCT2= 20 LOG
$$\frac{\text{VOUT(2)'}}{\text{VOUT(2)}}$$
 (dB)

Similarly measure the waveform amplitude output at OUT(5) when signal input only Pin35 and OUT when signal input only Pin30 and calculate crosstalk.

- 30) Measuring condition and procedure are the same as described in Note29, expect SG3 to 180MHz.
- 31) Input SG3 (50MHz) to pin42 only, and then measure the waveform amplitude output at OUT (2,5,9). The measured value is called VOUT (2,5,9). Crosstalk CHCT1 is calculated by the equation below:

CHCT1= 20 LOG
$$\frac{\text{VOUT}(5,9)}{\text{VOUT}(2)}$$
 (dB)

- 32) Measuring condition and procedure are the same as described in Note31, expect SG3 to 180MHz.
- 33) Input SG3 (50MHz) to pin37 only, and then measure the waveform amplitude output at OUT (2,5,9). The measured value is called VOUT (2,5,9). Crosstalk CHCT2 is calculated by the equation below:

by the equation below:

$$CHCT2= 20 LOG \frac{VOUT(2,9)}{VOUT(5)}$$
(dB)

- 34) Measuring condition and procedure are the same as described in Note33, expect SG3 to 180MHz.
- 35) Input SG3 (50MHz) to pin32 only, and then measure the waveform amplitude output at OUT(2,5,9). The measured value is called VOUT(2,5,9). Crosstalk CHCT3 is calculated by the equation below:

CHCT3= 20 LOG
$$\frac{\text{VOUT}(2,5)}{\text{VOUT}(9)}$$
 (dB)

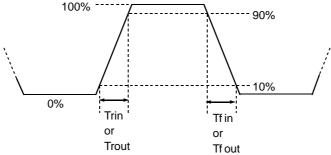
36) Measuring condition and procedure are the same as described in Note35, expect SG3 to 180MHz.

IIC BUS controlled 3channel video pre-amplifier for LCD display monitor.

37) Control the contrast in order that the amplitude of output signal is 2.0Vp-p. Control the brightness in order that the Black level of output signal is 1.0V. Measure the time needed for the input pulse to rise from 10 % to 90 % (Trin) and for the output pulse to rise from 10 % to 90 % (Trout) with an active prove. Pulse characteristics TAR is calculated by the equations below:

$$Tr1 = \sqrt{(Trin)^2 - (Trout)^2}$$
 (nsec)

38) Relative Pulse characteristics <u>∆</u>Tr1 is calculated by the equation below:


$$\Delta$$
Tr1= VOUT(2) - VOUT(5) , VOUT(5) - VOUT(9) , VOUT(9) - VOUT(2)

39) Measure the time needed for the input pulse to fall from 90 % to 10 % (Tfin) and for the output pulse to fall from 90 % to 10 % (Tfout) with an active prove. Pulse characteristics TO is calculated by the equations below:

Tf1 =
$$\sqrt{(Tfin)^2 - (Tfout)^2}$$
 (nsec)

40) Relative Pulse characteristics △Tf1 is calculated by the equation below:

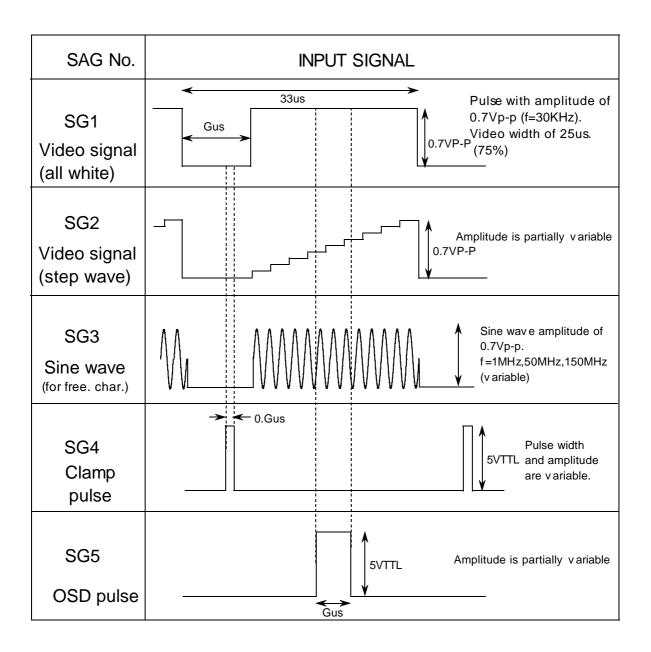
$$\Delta$$
 Tf1 = VOUT(2) - VOUT(5) , VOUT(5) - VOUT(9) , VOUT(9) - VOUT(2)

- 41) Change SW(2,5,9) from (a) to (b). Measuring condition and procedure are the same as described in Note37.
- 42) Measuring condition and procedure are the same as described in Note39, except of SW(2,5,9) condition.
- 43) Change SW(2,5,9) from (a) to (b). Measuring condition and procedure are the same as described in Note39.
- 44) Measuring condition and procedure are the same as described in Note40, except of SW(2,5,9) condition..
- Reduce the SG4 input level gradually from 5.0Vp-p, monitoring the waveform output. Measure the top level of input pulse when the output pedestal voltage turn decrease with unstable.
- 46) Decrease the SG4 pulse width gradually from 0.Gus, monitoring the output. Measure the SG4 pulse width (a point of 1.5V) when the output pedestal voltage turn decrease with unstable.

M61303FP

IIC BUS controled 3channel video pre-amplifier for LCD display monitor.

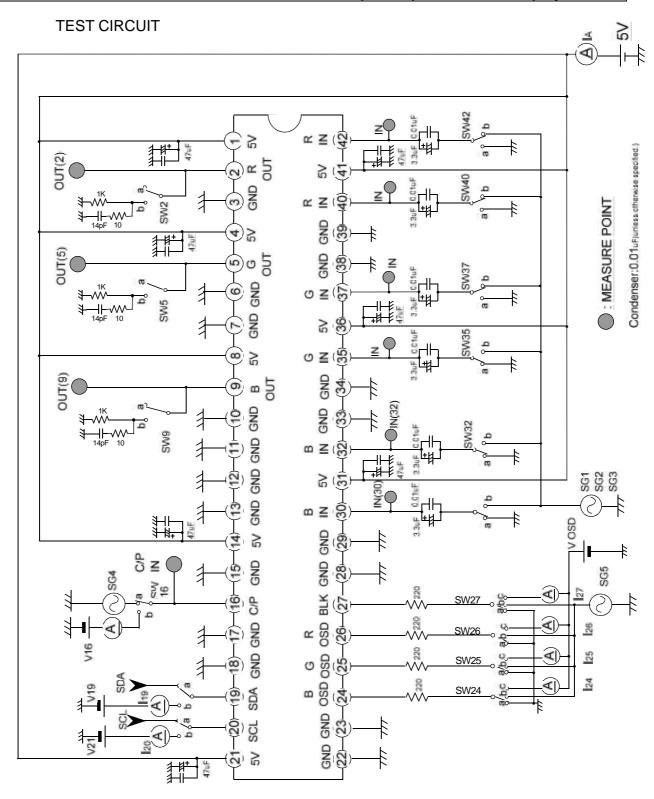
- 47) Measure the time needed for the output pulse to rise from 10% to 90% (OTr) with an active prove.
- 48) Measure the time needed for the output pulse to fall from 90% to 10% (OTf) with an active prove.
- 49) Measure the amplitude output at OUT(2,5,9). The measured value is called VOUT(2,5,9), and is treated as Oaj1.
- 50) Measuring condition and procedure are the same as described in Note49.
- 751) Relative characteristics Δ Oaj1 is calculated by the equation below: Δ Oaj1 = VOUT(2) / VOUT(5), VOUT(9) / VOUT(9) / VOUT(2)
- 52) Measuring condition and procedure are the same as described in Note49.
- 53) Measuring condition and procedure are the same as described in Note51.
- 54) Measuring condition and procedure are the same as described in Note49.
- 55) Measuring condition and procedure are the same as described in Note49.
- 56) Measuring condition and procedure are the same as described in Note51.
- 57) Measuring condition and procedure are the same as described in Note49.
- 58) Measuring condition and procedure are the same as described in Note51.
- 59) Measuring the amplitude output at OUT(2,5,9). The measured value is called OBLK.
- 60) Relative OSD BLK characteristics Δ OBLK is calculated by the equation below:


 \triangle OBLK = VOUT(2) / VOUT(5), VOUT(5) / VOUT(9), VOUT(9) / VOUT(2)

- 61) Reduce the SG5 input level gradually, monitoring output. Measure the SG5 level when the output reaches 0V. The measured value is called VthOSD.
- 62) Confirm that output signal is being blanked by the SG5 at the time.

 Monitoring to output signal, decreasing the level of SG5. Measure the top level of SG6 when the blanking period is disappeared. The measured value is called VthBLK.
- 63) Supply 5V to V19, and then measure input current into Pin19
- 64) Supply 0V to V19, and then measure input current into Pin19
- 65) Supply 5V to V20, and then measure input current into Pin20
- 66) Supply 0V to V20, and then measure input current into Pin20
- 67) Supply 5V to V(24,25,26) and then measure input current into Pin(24,25,26)
- 68) Supply 0V to V(24,25,26) and then measure input current into Pin(24,25,26)
- 69) Supply 5V to V27, and then measure input current into Pin27
- 70) Supply 0V to V27, and then measure input current into Pin27

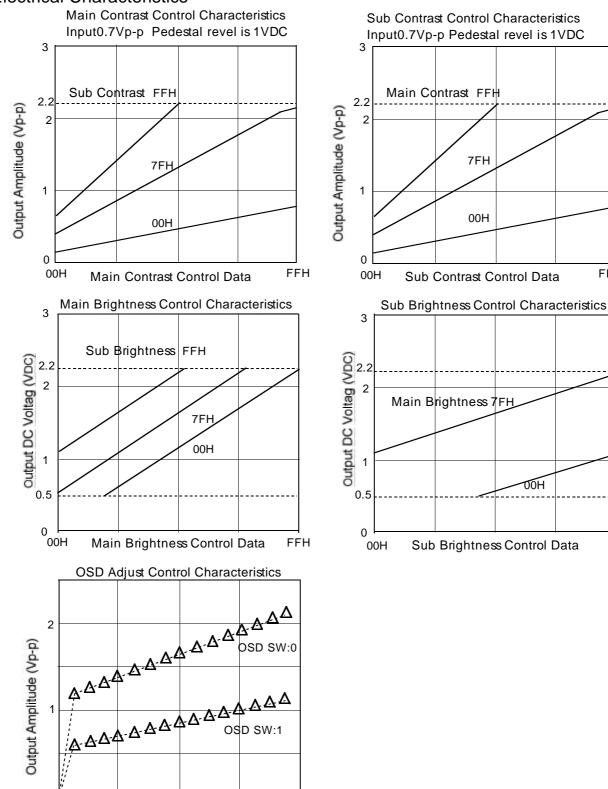
M61303FP


IIC BUS controled 3channel video pre-amplifier for LCD display monitor.

fH=30KHz

M61303FP

IIC BUS controled 3channel video pre-amplifier for LCD display monitor.


M61303FP

FFH

FFH

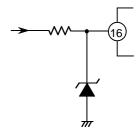
IIC BUS controlled 3channel video pre-amplifier for LCD display monitor.

OSD Adjust Control Data

00H

FFH

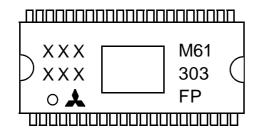
IIC BUS controlled 3channel video pre-amplifier for LCD display monitor.


Application Method

CLAMP PULSE INPUT

Clamp pulse width is recommended above 15 KHz, 1.0 usec above 30 KHz, 0.5 usec above 64 KHz, 0.3 usec

The clamp pulse circuit in ordinary set is a long round about way, and beside high voltage, sometimes connected to external terminal, it is very easy affected by large surge.


Therefore, the Fig. shown right is recommended.

Notice of application

- 1.Recommended pedestal voltage of IC output signal is 1V.
- 2.This IC has 2 Input routes. When the 2 Input signal input at different timing, clamp pulses which synchronize with selected signals is needed. In this case, it is necessary to change clamp pulses by the outside circuit.
- 3. Connect cuppling Cap(0.01u) as nearer as can to Vcc Pin. If not response of waveform is getting wrong.

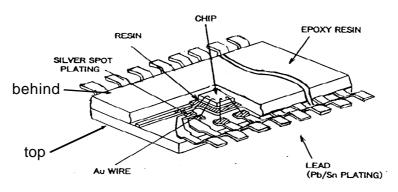
MARK

Lot No.

M61303FP

IIC BUS controled 3channel video pre-amplifier for LCD display monitor.

Material


Resin: Epoxy resin

Lead plating: Solder plating Frame: Copper alloy

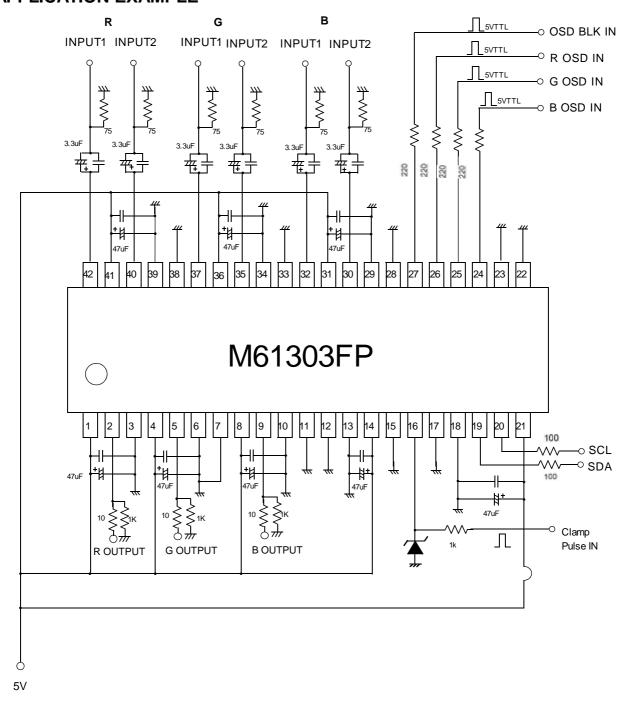
Die bond: resin Wiring: Au

Passibation: Nitride coat

Construction

Country of origin

Japan


Factory of mass production

FUKUOKA Factory

M61303FP

IIC BUS controled 3channel video pre-amplifier for LCD display monitor.

APPLICATION EXAMPLE

 $Condenser: 0.01 \, \mathsf{uF} (\mathsf{unless} \ \mathsf{otherwise} \ \mathsf{specified.})$

M61303FP

IIC BUS controled 3channel video pre-amplifier for LCD display monitor.

Terminal Description

No.	Name	DC Voltage (V)	peripheral Circuit	Remark
1	R VCC 2			
4	G VCC 2	5		
8	B VCC2			
2	OUTPUT (R)			
5	OUTPUT (G)		2 20Ω	Pull down about 1k for valance control Tr and Tf
9	OUTPUT (B)		20mA	TI and TI
3	R GND 2			
6	G GND 2	GND		
10	B GND 2			
13	Analog Gnd	GND		
14	Analog Vcc	5		
16	Clamp Pulse In		16 2.0V 2.0V 0.2mA	more than 200nSec

M61303FP

IIC BUS controled 3channel video pre-amplifier for LCD display monitor.

No.	Name	DC Voltage (V)	peripheral Circuit	Remark
18	Digital GND	GND		
19	SDA		19 w 3v	SDA for II C (Serial data line) VTH=2.3V
20	SCL		20 T 3V	SCL for II C (Serial clock line) VTH=2.3V
21	Digital Vcc	5V		
24	B OSD IN			Input pulses 3.5 ∽ 5V 1.0V ∽ GND
25	G OSD IN		24 W 1k 2.5V	1.07 - 5145
26	R OSD IN		72.5V T 777	

M61303FP

IIC BUS controled 3channel video pre-amplifier for LCD display monitor.

No.	Name	DC Voltage (V)	peripheral Circuit	Remark
27	OSD BLK IN	<u> </u>	27	Input pulses 3.5 \sim 5V 1.0V \sim GND Connected to GND if not used.
29 34 39	B GND 1 G GND 1 R GND 1	GND		
30 32 35 37 40 42	B INPUT 2 B INPUT 1 G INPUT 2 G INPUT 1 R INPUT 2 R INPUT 1	2.1 V	2K 2K 2K 2K 2N CP 0.3mA 777 0 (off) 3.5V(on)	 Clamped to about 2.1 V due to clamp pulses from pin16. Input at low impedance.
31 36 41	R VCC 1 G VCC 1 B VCC 1	5		
7 11 12 15 17 22 23 28 33 38	NC			Connect GND for radiation of heat