RENESAS

M62384FP

8-Bit, 4-Channel, 3 to 5 V D-A Converter (Buffered)

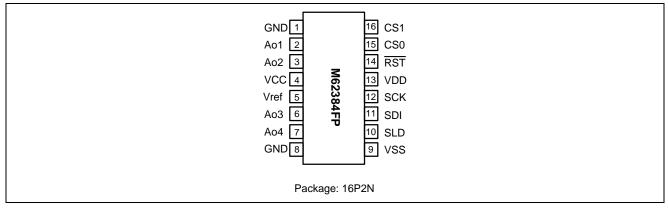
REJ03F0077-0100Z Rev.1.0 Sep.19.2003

Description

The M62384 is a CMOS-structure semiconductor integrated circuit incorporating four 8-bit D-A converter channels with output buffer op-amps.

Serial data transfer type input can easily be used through a combination of three lines: DI, CLK, and LD. Outputs incorporate buffer op-amps that have a drive capacity of 1 mA or above for both sink and source, and can operate over the entire voltage range from almost ground to VCC (0 to 5 V), making peripheral elements unnecessary and enabling configuration of a system with few component parts.

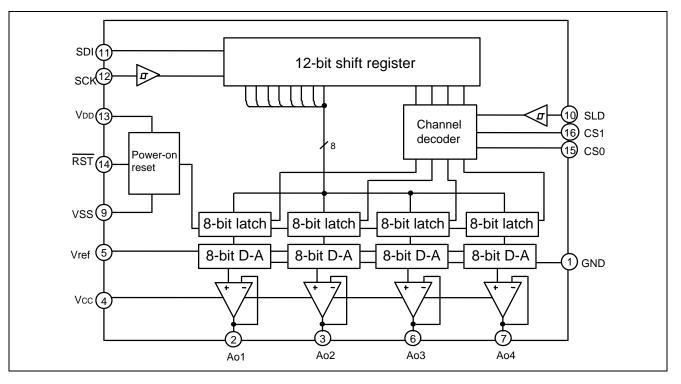
Support of power supply voltages of 3 V to 5 V enables the M62384 to be used in a wide range of applications.


Features

- 12-bit serial data input (3-line type: SDI, SCK, SLD)
- Serial data transfer clock frequency: 10 MHz (max.)
- Output buffer op-amps Operable over entire voltage range from almost ground to VCC
- Power-on reset and external reset functions
- Chip select function Up to 4 chips connectable on the same bus
- Supported power supply voltage: 3 V to 5 V (2.7 V to 5.5 V)

Application

Signal gain setting and automatic adjustment in CTV and display monitors, conversion from digital data to analog data in consumer and industrial products

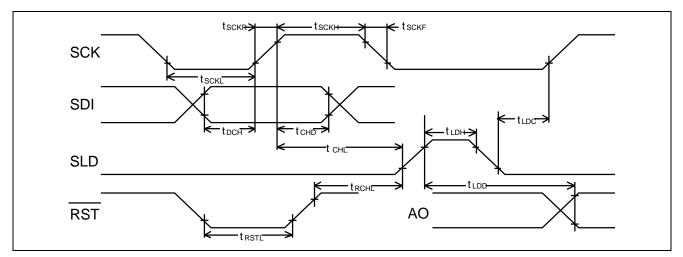

Pin Connection Diagram (Top View)

This product is currently under development, and specifications and other details may be modified at a future date.

Block Diagram

Pin Fun	Pin Functions							
Pin No.	Symbol	Function						
1, 8	GND	Analog GND: analog circuit GND (D-A converter lower reference voltage)						
2	Ao1	D-A converter output pins (ch1 to ch4): full-swing buffer output Output voltage: Ao (00)h = 0V, Ao (FF)h = $255/256 \times VREF$						
3	Ao2							
6	Ao3							
7	Ao4							
4	Vcc	Analog power supply (3 V to 5 V) Must rise simultaneously with VDD or after VDD rise.						
5	Vref	D-A converter upper reference voltage input pin						
9	Vss	Digital GND						
10	SLD	Serial load signal input pin (Schmitt trigger input: with input hysteresis) When SLD is high, data is loaded from shift register into 8-bit latch corresponding to address.						
11	SDI	Serial data input pin (TTL input in case of 5 V power supply) Inputs serial data with a 12-bit data length (MSB-first).						
12	SCK	Serial clock signal input pin (Schmitt trigger input: with input hysteresis) At rising edge, data is read into shift register one bit at a time.						
13	VDD	Digital power supply pin (3 V to 5 V) When power supply rises, D-A output is reset (0 V output: power-on reset).						
14	RST	Forced reset pin (TTL input in case of 5 V power supply) L: D-A output (AO1 to 4) = Fixed setting of 0 V H: Reset release (power-on reset operation)						
15	CS0	Chip select pins (TTL input in case of 5 V power supply)						
16	CS1	Access possible only when chip select data (D11, D10) and pin (CS1, CS0) logic match.						

Absolute Maximum Ratings


			(Unle	ess specified otherwise, Ta = 25°C)
Item	Symbol	Rated Value	Unit	Conditions
Power supply voltage	VCC,VDD	-0.3 to 7.0	V	
Digital input voltage	VDIN	-0.3 to Vcc+0.3 (≤ 7.0)	V	DC voltage ("H" level)
Reference voltage input voltage	Vref	-0.3 to Vcc+0.3 (≤ 7.0)	V	
D-A output voltage	VAO	-0.3 to Vcc+0.3 (≤ 7.0)	V	
Permissible loss	Pd	300	mW	
Operating ambient temperature	Topr	-20 to +75	°C	
Storage temperature	Tstg	-40 to +125	°C	

Recommended Operating Conditions

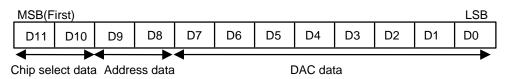
(Unless specified otherwise, VCC = VDD = 5 V $\pm 10\%$, Vref = 2 V to VCC, VSS = GND = 0 V, fsck = 5 MHz, VDINH = VDD, VDINL = VSS, Ta = 20°C to 75°C)

		Specification Values			_		
Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Analog power supply voltage	VCC	2.7		5.5	V	VCC = VDD	
Digital power supply voltage	VDD	2.7		5.5	V	VCC = VDD	
Reference voltage	Vref	2.0		5.5	V	$Vref \leq VCC$	
Serial clock frequency	fsck			10	MHz		
"H" level digital input voltage	VDINH	0.5VDD		VDD	V		
"L" level digital input voltage	VDINL	VSS		0.2VDD	V		
Clock "H" pulse width	tsckH	30			ns	$VCC = VDD \ge 2.7V$	
Clock "L" pulse width	tsckL	30			ns	$VCC = VDD \ge 2.7V$	
Clock rise time	tsckR			200	ns		
Clock fall time	tsckF			200	ns		
Data setup time	tDCH	10			ns		
Data hold time	tCHD	20			ns		
Load setup time	tCHL	40			ns		
Load hold time	tLDC	20			ns		
Load "H" pulse width	tLDH	20			ns		
Reset "L" pulse width	tRSTL	50			ns		
Load setup time after reset release	tRCHL	50			ns		

Timing Chart

Electrical Characteristics

 $(Unless specified otherwise, VCC = VDD = 5 V \pm 10\%, Vref = 2 V to VCC, VSS = GND = 0 V, fsck = 5 MHz, VDINH = VDD, VDINL = VSS, Ta = 20^{\circ}C to 75^{\circ}C)$


(1) Digital block

		Specification Values					
ltem	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Digital block circuit current	IDD			1.0	mA		
Input leakage current	IDINLK	-10	0	10	μA	VDIN = VSS to VDD	
Input threshold voltage	VDINT	0.2VDD		0.5VDD	V		
Input hysteresis voltage	$\Delta VDINT$		100		mV		

(2) Analog block

		Specification Values				
ltem	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Analog block circuit current	ICC		0.8	2.0	mA	No load
Reference voltage input current	Iref		0.5	1.0	mA	All channels: Maximum current conditions
Differential nonlinearity error	SDL	-1.0		1.0	LSB	VCC = VDD = 2.7V to 5.5V
Nonlinearity error	SNL	-1.5		1.5	LSB	IA0: With no load
Zero scale error	SZERO	-2.0		2.0	LSB	-
Full-scale error	SFULL	-2.0		2.0	LSB	_
Output current	IAO	±0.5			mA	VOA = 0.1V to $VCC - 0.1V$
Settling time	tLDD		5	10	μS	VOA = $0.5 \leftrightarrow 4.5$ V, IOA = 0.1 mA, Co = 50 pF output absorbed within ± 0.5 LSB
Power-on reset voltage	VPR	0.8	1.5	2.5	V	VCC = 0 V \rightarrow 5 V, V0A = 0 V setting voltage (reference values)

Digital Data Format

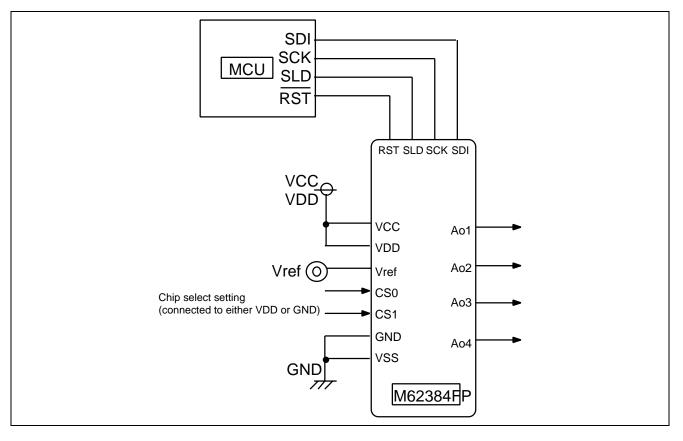
(1) Chip select data

D11	D10	CS1	CS0
0	0	L	L
0	1	L	Н
1	0	Н	L
1	1	Н	Н

Data is transferred only when logic of D11 and D10 matches CS pin setting (CS1, CS0).

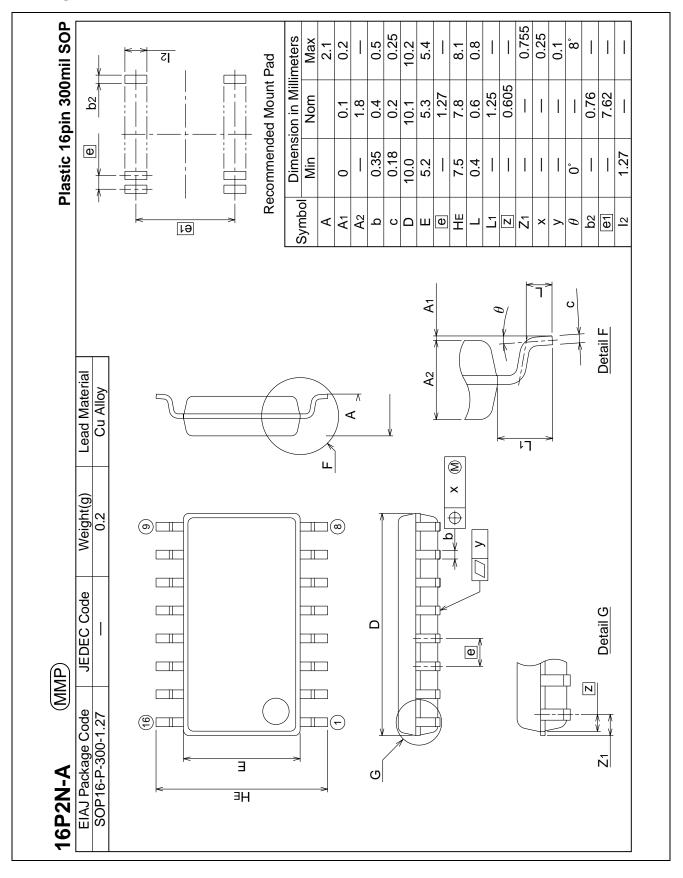
(2) Address data

D8	D9	Channel Selection
0	0	AO1 selected
0	1	AO2 selected
1	0	AO3 selected
1	1	AO4 selected


DAC Data

D7	D6	D5	D4	D3	D2	D1	D0	D-A output
0	0	0	0	0	0	0	0	(0/256)×Vref
0	0	0	0	0	0	0	1	(1/256)×Vref
0	0	0	0	0	0	1	0	(2/256)×Vref
0	0	0	0	0	0	1	1	(3/256)×Vref
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	:
1	1	1	1	1	1	1	0	(254/256)×Vref
1	1	1	1	1	1	1	1	(255/256)×Vref

Data Timing Chart


SDI	D11 \ D10 \ D9 \ D8 \ \ D2 \ D1 \ D0 \
SCK	
SLD	
Ao	X
cor	en SLD is high, data captured in the shift register is loaded into the 8-bit latch responding to the address. Therefore, SCK should be held high or low when D is high.

Sample Application Circuit

Package Dimensions

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

- The party inst in your circuit designs:
 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
 Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
 Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
 All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product.
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to eva use.
- use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

http://www.renesas.com

RENESAS SALES OFFICES

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd. 1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001