M66280FP

5120 x 8-BIT LINE MEMORY

DESCRIPTION

The M66280FP is high speed line memory that uses high performance silicon gate CMOS process technology and adopts the FIFO (First In First Out) structure consisting of 5120 words x 8 hits

The M66280FP, performing reading and writing operations at different cycles independently and asynchronously, is optimal for buffer memory to be used between equipment of different data processing speeds.

FEATURES

• Memory configuration 5120 words x 8 bits (dynamic memory)

High speed cycle
High speed access
Output hold
25 ns (Min.)
18 ns (Max.)
3 ns (Min.)

 Reading and writing operations can be completely carried out independently and asynchronously.

· Variable length delay bit

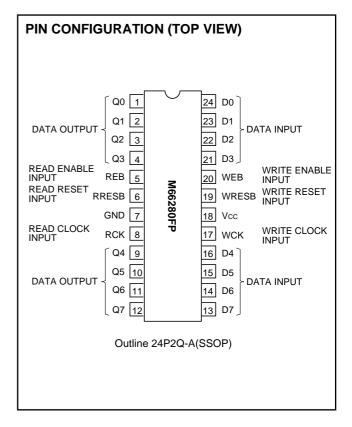
Input/output TTL direct connection allowable

Output 3 states

APPLICATION

 Digital copying machine, laser beam printer, high speed facsimile, etc.

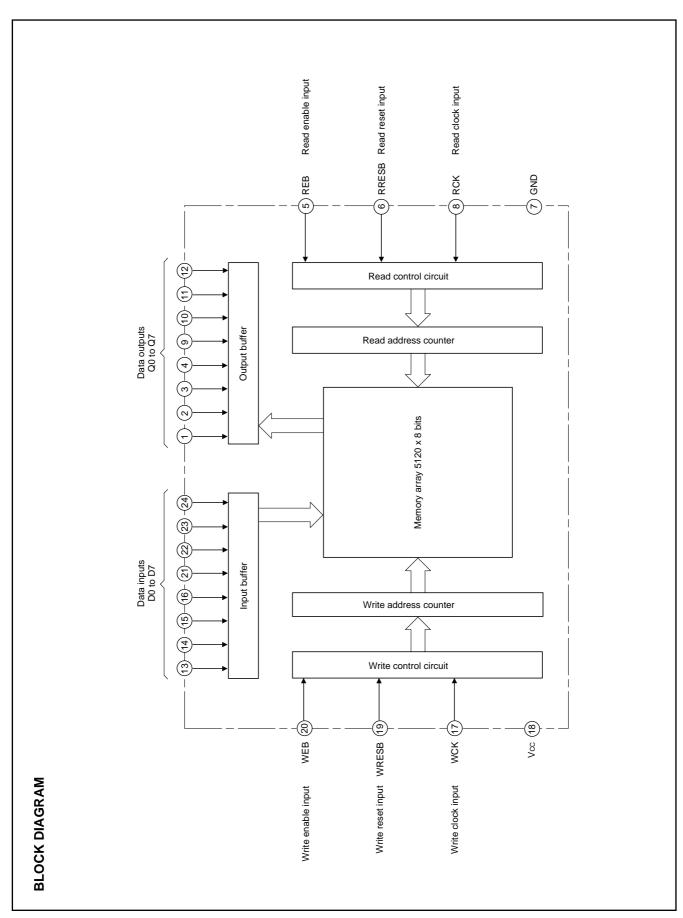
FUNCTION


When write enable input WEB is set to "L", the contents of data inputs D0 to D7 are read in synchronization with a rising edge of write lock input WCK to perform writing operation. When this is the case,the write address counter is also incremented simultaneously. When WEB is set to "H", the writing operation is inhibited and the write address counter stops.

When write reset input WRESB is set to "L", the write address counter is initialized.

When read enable input REB is set to "L", the contents of memory are output to data outputs Q0 to Q7 in synchronization with a rising edge of read clock input RCK to perform reading operation. When this is the case, the read address counter is incremented simultaneously.

When REB is set to "H", the reading operation is inhibited and the read address counter stops. The outputs are placed in a high impedance state.


When read reset input RRESB is set to "L", the read address counter is initialized.

•

M66280FP

5120 x 8-BIT LINE MEMORY

ABSOLUTE MAXIMUM RATINGS (Ta=0 – 70 °C unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.3 - +4.6	V
Vı	Input voltage	Value based on the GND pin	-0.3 - Vcc+0.3	V
Vo	Output voltage		-0.3 - Vcc+0.3	V
Pd	Power dispersion	T=25ns	300	mW
Tstg	Storage temperature		-55 — 150	°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Doromotor		I India			
Syllibol	Parameter	Min.	Тур.	Max.	Unit	
Vcc	Supply voltage	2.7	3.15	3.6	V	
GND	Supply voltage		0		V	
Topr	Operating temperature	0		70	°C	

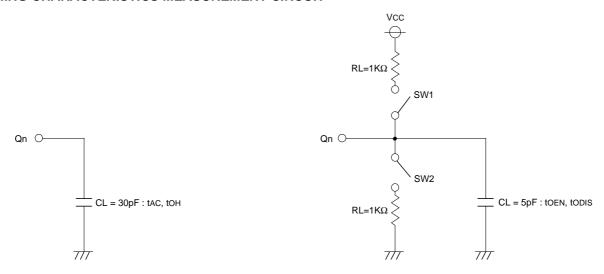
ELECTRICAL CHARACTERISTICS (Ta=0 - 70 °C, Vcc=2.7 - 3.6V, GND=0V unless otherwise noted)

Currente est	Demonstra	Conditions		Limits			l lait
Symbol	Parameter			Min.	Тур.	Max.	Unit
ViH	High-level input voltage			2.0			V
VIL	Low-level input voltage					0.8	V
Vон	High-level output voltage	Iон = -4mA		Vcc-0.8			V
Vol	Low-level output voltage	IoL = 4mA				0.55	V
Іін	High-level input current	VI = VCC	WEB, WRESB, WCK, REB, RRESB, RCK, D0 – D7			1.0	μΑ
lı∟	Low-level input current	Vı = GND	WEB, WRESB, WCK, REB, RRESB, RCK, D0 – D7			-1.0	μΑ
lozн	Off-state high-level output current	Vo=Vcc				5.0	μΑ
lozL	Off-state low-level output current	Vo = GND				-5.0	μΑ
Icc	Average supply current during operation	VI = Vcc, GND, output open twck, trck = 25ns				70	mA
Сі	Input capacitance	f = 1MHz				10	pF
Со	Off-time output capacitance	f = 1MHz				15	pF

SWITCHING CHARACTERISTICS (Ta=0 – 70 °C, Vcc=2.7 – 3.6V, GND=0V unless otherwise noted)

Symbol	Parameter	Limits			Lloit
		Min.	Тур.	Max.	Unit
tAC	Access time			18	ns
tон	Output hold time	3			ns
toen	Output enable time	3		18	ns
todis	Output disable time	3		18	ns

TIMING REQUIREMENTS (Ta=0 - 70 °C, Vcc=2.7 - 3.6V, GND=0V unless otherwise noted)


Symbol	Develope		Limits		
	Parameter		Тур.	Max.	Unit
twcĸ	Write clock (WCK) cycle	25			ns
twckh	Write clock (WCK) "H" pulse width	11			ns
twckl	Write clock (WCK) "L" pulse width	11			ns
trck	Read clock (RCK) cycle	25			ns
trckh	Read clock (RCK) "H" pulse width	11			ns
trckl	Read clock (RCK) "L" pulse width	11			ns
tDS	Input data set up time for WCK	7			ns
tDH	Input data hold time for WCK	3			ns
tress	Reset set up time for WCK/RCK	7			ns
tresh	Reset hold time for WCK/RCK	3			ns
tnress	Reset non-selection set up time for WCK/RCK	7			ns
tnresh	Reset non-selection hold time for WCK/RCK	3			ns
twes	WEB set up time for WCK	7			ns
tweh	WEB hold time for WCK	3			ns
tnwes	WEB non-selection set up time for WCK	7			ns
tnweh	WEB non-selection hold time for WCK	3			ns
tres	REB set up time for RCK	7			ns
treh	REB hold time for RCK	3			ns
tnres	REB non-selection set up time for RCK	7			ns
tnreh	REB non-selection hold time for RCK	3			ns
tr, tf	Input pulse up/down time			20	ns
tH	Data hold time (Note 1)			20	ms

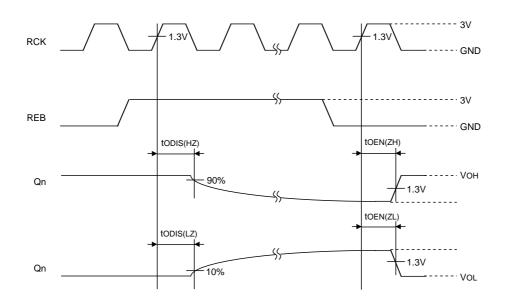
Note 1: For 1 line access, the following conditions must be satisfied: WEB high-level period \leq 20 ms - 5120 • tWCK - WRESB low-level period REB high-level period \leq 20 ms - 5120 • tRCK - RRESB low-level period

2: Perform reset operation after turning on power supply.

4

SWITCHING CHARACTERISTICS MEASUREMENT CIRCUIT

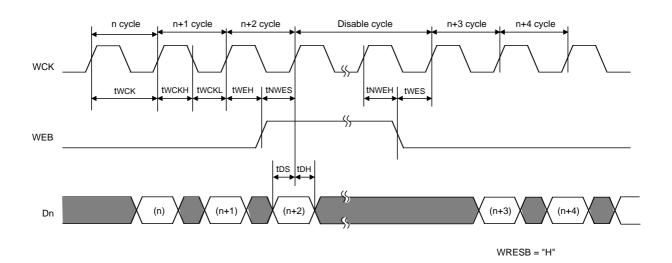
Output : 1.3V(However, tODIS(LZ) is judged with 10% of the

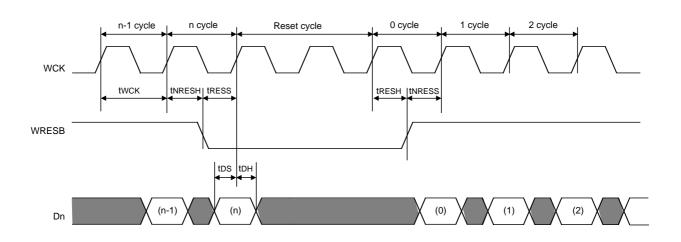

output amplitude, while tODIS(HZ) is judged with

90% of the output amplitude.)

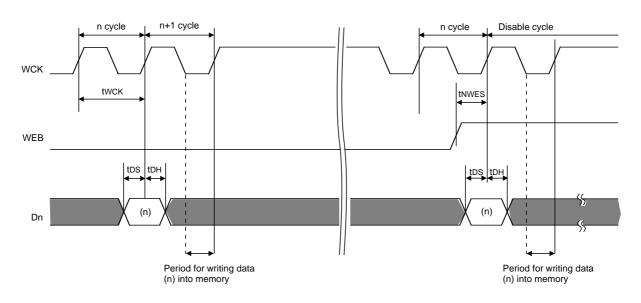
Load capacitance CL includes the floating capacity of connected lines and input capacitance of probe.

Item	SW1	SW2
tODIS(LZ)	Close	Open
tODIS(HZ)	Open	Close
tOEN(ZL)	Close	Open
tOEN(ZH)	Open	Close


todis and toen measurement condition


WEB = "L"

OPERATION TIMING


• Write cycle

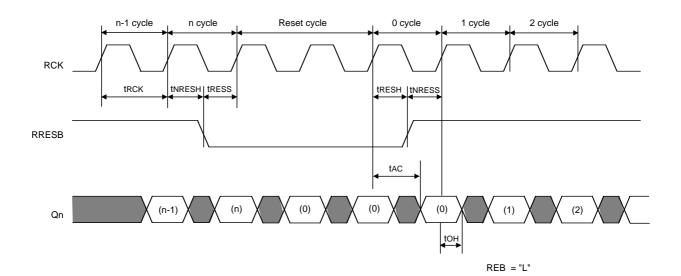
• Write reset cycle

• Matters that needs attetion when WCK stops


WRESB = "H"

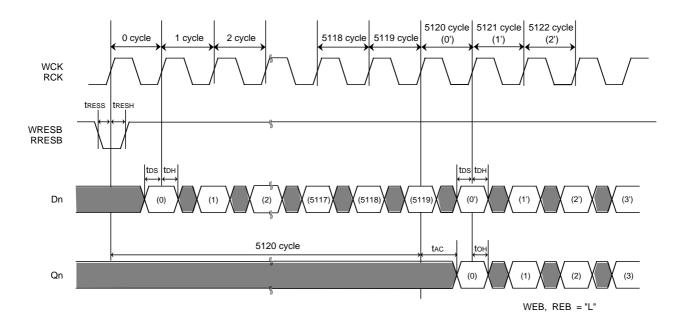
Input data of n cycle is read at the rising edge after WCK of n cycle and writing operation starts in the WCK low-level period of n+1 cycle. The writing operation is complete at the falling edge after n+1 cycle.

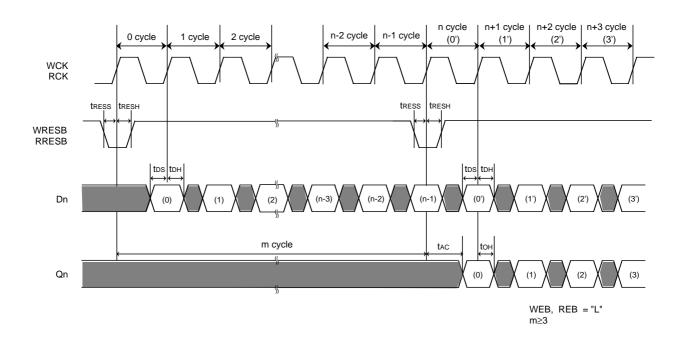
To stop reading write data at n cycle, enter WCK before the rising edge after n+1 cycle.


When the cycle next to n cycle is a disable cycle, WCK for a cycle requires to be entered after the disable cycle as well.

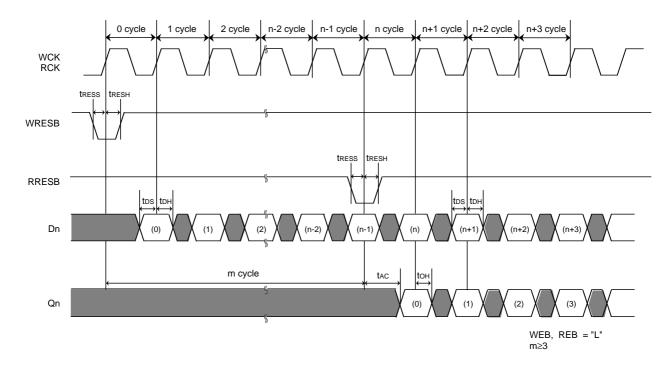
• Read cycle

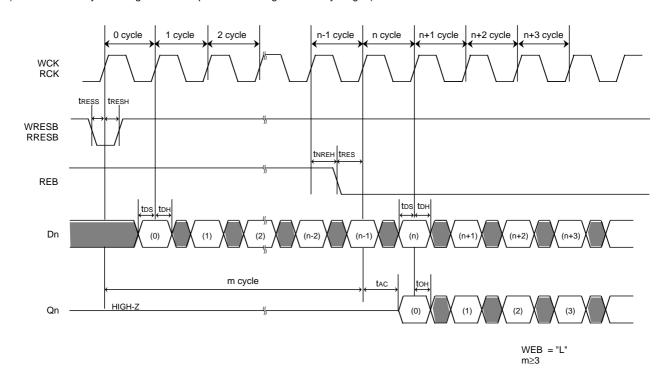
RRESB = "H"


• Read reset cycle

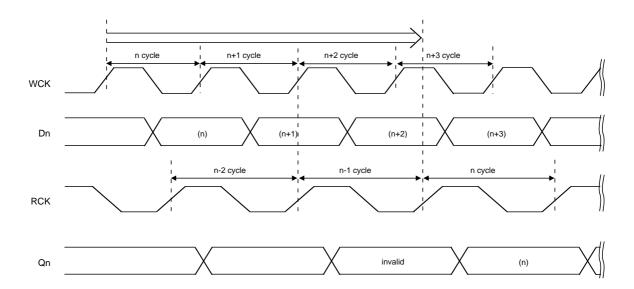

VARIABLE LENGTH DELAY BIT

• 1 line (5120 bits) delay

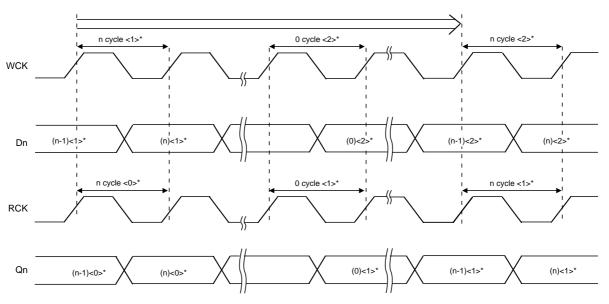

Input data can be written at the rising edge of WCK after write cycle and output data is read at the rising edge of RCK before read cycle to easily make 1 line delay.


• n-bit delay bit (Reset at cycles according to the delay length)

• n-bit delay 2 (Slides input timings of WRESB and RRESB at cycles according to the delay length.)

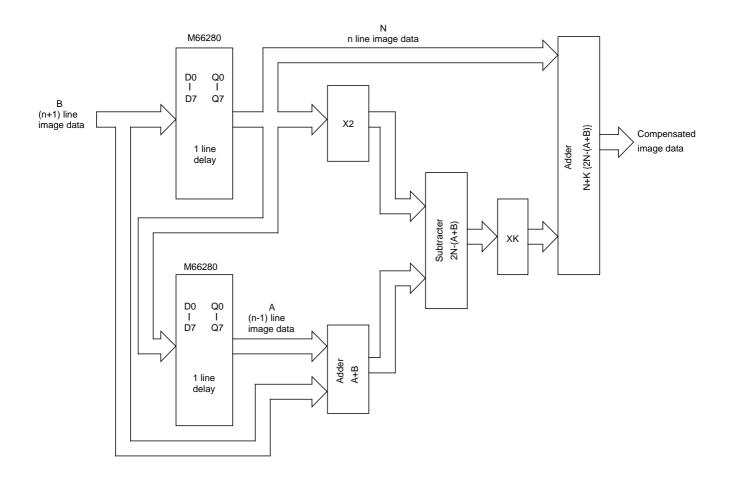


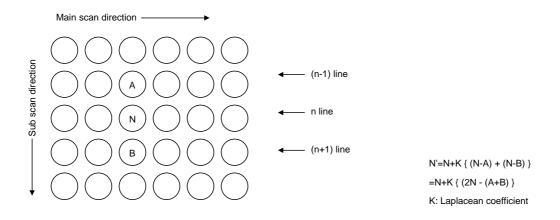
• n-bit delay 3 (Slides address by disabling REB in the period according to the delay length.)


• Reading shortest n-cycle write data "n" (Reading side n-1 cycle starts after the end of writing side n-1 cycle.)

When the reading side n-1 cycle starts before the end of the writing side n+1 cycle, output Qn of n cycle is made invalid. In the following diagram, reading operation of n-1 cycle is invalid.

• Reading longest n-cycle write data "n": 1 line delay (When writing side n-cycle <2>* starts, reading side n cycle <1>* then starts.)


Output Qn of n cycle <1>* can be read until the start of reading side n cycle <1> and the start of writing side n cycle <2>* overlap each other.



<0>*, <1>* and <2>* indicate value of lines.

APPLICATION EXAMPLE

Sub Scan Resolution Compensation Circuit with Laplacean Filter

