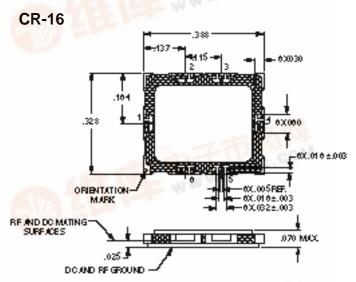


Low Noise GaAs MMIC Amplifier 7.5 - 12 GHz

MAAM71200-H1

V 2.00

Features


- 2.7 dB Typical Noise Figure
- 15.5 dB Typical Gain
- Single Bias Supply
- Low Current Consumption
- DC Decoupled RF Input and Output
- Ceramic Package

Description

M/A-COM's MAAM71200-H1 is a wide band, low noise GaAs MMIC amplifier enclosed in a leadless ceramic package¹. The MAAM71200-H1 is a packaged version of M/A-COM's MAAM71200 low noise MMIC amplifier chip. The fully monolithic design operates in 50 ohms without the need for external components.

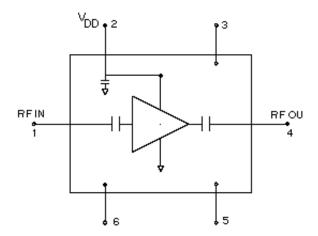
The MAAM71200-H1 is ideally suited for microstrip assemblies where wire or ribbon bonds are used for interconnects. Typical applications include radar, EW and communication systems.

The MAAM71200 is fabricated using a mature 0.5-micron gate length GaAs process for increased reliability and performance repeatability.

Dimensions are in inches.

Typical Electrical Specifications, $T_A = +25$ °C, $V_{DD} = 4 \text{ V}$

Parameter	Units	Min.	Тур.	Max.
Gain	dB	14.5	15.5	
Noise Figure	dB		2.7	3.5
Input VSWR	COM		2.0:1	
Output VSWR			1.8:1	
Output 1dB Compression Point	dBm		11	
Third Order Intercept Point	dBm		21	
Reverse Isolation	dB		30	
Bias Current (IDD)	mA		40	55

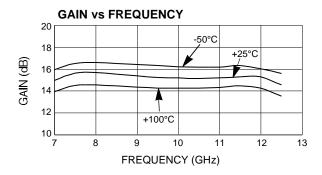


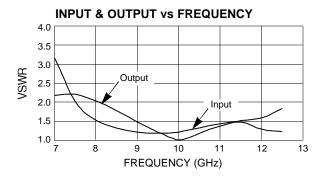
Absolute Maximum Ratings 1

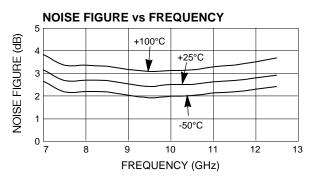
Parameter	Absolute Maximum
Input Power	+20 dBm
V _{DD}	+9 Volts
Junction Temperature	+150°C
Storage Temperature	-65°C to +150°C
Thermal Resistance	175°C/W

Operation of this device outside any of these limits may cause permanent damage

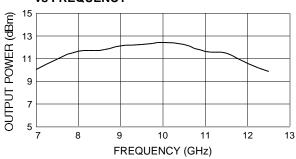
Functional Diagram




- 1. Case must be electrically connected to RF and DC ground.
- 2.The RF bond inductance from the transmission line to the package is assumed to be 0.25 nH. Variations in bond inductance will result in variations in VSWR and gain slope. A small capacitive stub


may be needed depending on the inductance realized in the final assembly.

- 3.Nominal bias is obtained by setting $V_{\mbox{DD}}$ = 4 volts.
- Increasing V_{DD} from 4 volts to 6 volts increases output power and high frequency bandwidth.


Typical Performance

