捷多邦,专业PCB打样工厂,24小时加急出货

MAC12SM, MAC12SN

Preferred Device

Sensitive Gate Triacs

Silicon Bidirectional Thyristors

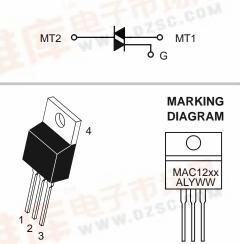
Designed for industrial and consumer applications for full wave control of ac loads such as appliance controls, heater controls, motor controls, and other power switching applications.

- Sensitive Gate Allows Triggering by Microcontrollers and other Logic Circuits
- Blocking Voltage to 800 Volts
- On-State Current Rating of 12 Amperes RMS at 70°C
- High Surge Current Capability 90 Amperes
- Rugged, Economical TO220AB Package
- Glass Passivated Junctions for Reliability and Uniformity
- Maximum Values of IGT, VGT and IH Specified for Ease of Design
- High Commutating di/dt 8.0 A/ms Minimum at 110°C
- Immunity to dV/dt 15 V/µsec Minimum at 110°C
- Operational in Three Quadrants: Q1, Q2, and Q3
- Device Marking: Logo, Device Type, e.g., MAC12SM, Date Code

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) (T _J = -40 to 110°C, Sine Wave, 50 to 60 Hz, Gate Open) MAC12SM MAC12SN	Vdrm, V _{rrm}	600 800	V
On-State RMS Current (All Conduction Angles; T _C = 70°C)	I _{T(RMS)}	12	A
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, T _J = 110°C)	I _{TSM}	90	A
Circuit Fusing Consideration (t = 8.33 ms)	l ² t	33	A ² sec
Peak Gate Power (Pulse Width = 1.0 μsec, T _C = 70°C)	P _{GM}	16	W
Average Gate Power (t = 8.3 msec, $T_C = 70^{\circ}C$)	P _{G(AV)}	0.35	W
Operating Junction Temperature Range	T _J	- 40 to 110	°C
Storage Temperature Range	T _{stg}	- 40 to 150	°C

 (V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.



ON Semiconductor

http://onsemi.com

TRIACS 12 AMPERES RMS 600 thru 800 VOLTS

TO-220AB CASE 221A

Style 4 xx

- xx = Specific Device Code A = Assembly Location
 - Assembly Location
 Wafer Lot

= vvaler L ' = Year

WW = Work Week

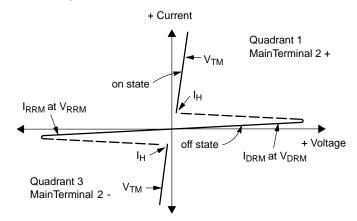
PIN ASSIGNMENT				
1	Main Terminal 1			
2	Main Terminal 2			
3	Gate			
4	Main Terminal 2			

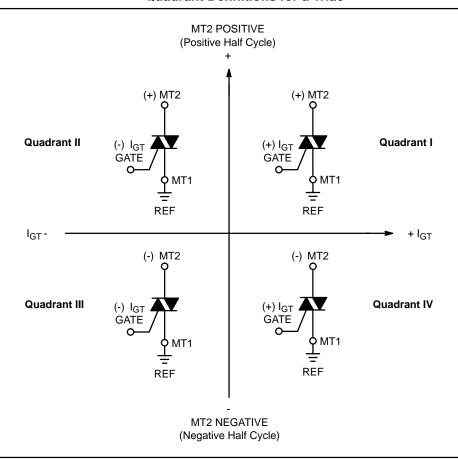
ORDERING INFORMATION

Device	Package	Shipping
MAC12SM	TO220AB	50 Units/Rail
MAC12SN	TO220AB	50 Units/Rail

Preferred devices are recommended choices for future use and best overall value.

THERMAL CHARACTERISTICS

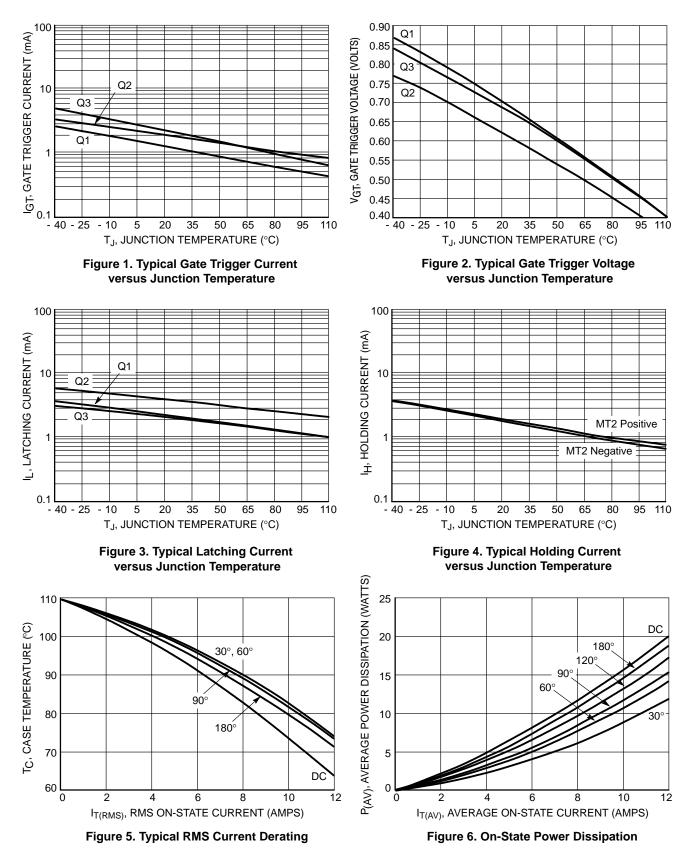

Characteristic	Symbol	Value	Unit
Thermal Resistance - Junction to Case - Junction to Ambient	$R_{ extsf{ heta}JC} \ R_{ extsf{ heta}JA}$	2.2 62.5	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	TL	260	°C


ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted; Electricals apply in both directions)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					•
Peak Repetitive Blocking Current $(V_D = Rated V_{DRM}, V_{RRM}; Gate Open)$ $T_J = 25^{\circ}C$ $T_J = 110^{\circ}C$		-	-	0.01 2.0	mA
ON CHARACTERISTICS	· · · · ·				
Peak On-State Voltage ⁽¹⁾ ($I_{TM} = \pm 17 \text{ A}$)	V _{TM}	-	-	1.85	V
Gate Trigger Current (Continuous dc) ($V_D = 12 V$, $R_L = 100 \Omega$) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-)	I _{GT}	- - -	1.5 2.5 2.7	5.0 5.0 5.0	mA
Holding Current (V_D = 12 V, Gate Open, Initiating Current = ±200 mA)	Ι _Η	-	2.5	10	mA
Latching Current ($V_D = 12 \text{ V}, I_G = 5 \text{ mA}$) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-)	ι	- - -	3.0 5.0 3.0	15 20 15	mA
Gate Trigger Voltage (Continuous dc) ($V_D = 12 V$, $R_L = 100 \Omega$) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-)	V _{GT}	0.45 0.45 0.45	0.68 0.62 0.67	1.5 1.5 1.5	V
DYNAMIC CHARACTERISTICS					
Critical Rate of Change of Commutating Current ($V_D = 400 \text{ V}, I_{TM} = 3.5 \text{ A}, \text{ Commutating dV/dt} = 10 \text{ V/}\mu\text{s}, \text{ Gate C}$ $T_J = 110^{\circ}\text{C}, f = 500 \text{ Hz}, \text{ Snubber: } \text{Cs} = 0.01 \mu\text{f}, \text{ Rs} = 15 \Omega$)	open, (di/dt) _c	8.0	10	-	A/ms
Critical Rate of Rise of Off-State Voltage (V_D = 67% V_{DRM} , Exponential Waveform, R_{GK} = 1 K Ω , T_J = 110°C)		15	40	-	V/µs
Repetitive Critical Rate of Rise of On-State Current IPK = 50 A; PW = 40 μ sec; diG/dt = 1 A/ μ sec; Igt = 100 mA; f = 60 Hz	di/dt	-	-	10	A/μs

Voltage Current Characteristic of Triacs (Bidirectional Device)

Symbol	Parameter
V _{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current



Quadrant Definitions for a Triac

All polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used.

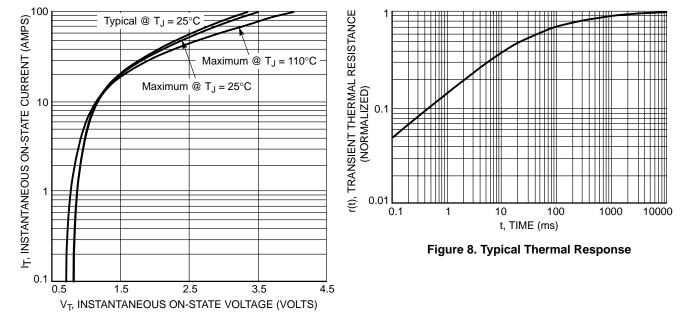
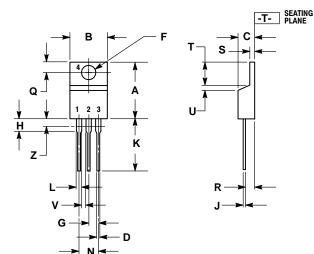



Figure 7. Typical On-State Characteristics

PACKAGE DIMENSIONS

TO-220AB CASE 221A-09

ISSUE AA

NOTES:

 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

CONTROLLING DIMENSION: INCH.
 DIMENSION Z DEFINES A ZONE WHERE A

3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX		
Α	0.570	0.620	14.48	15.75		
В	0.380	0.405	9.66	10.28		
С	0.160	0.190	4.07	4.82		
D	0.025	0.035	0.64	0.88		
F	0.142	0.147	3.61	3.73		
G	0.095	0.105	2.42	2.66		
Н	0.110	0.155	2.80	3.93		
J	0.018	0.025	0.46	0.64		
Κ	0.500	0.562	12.70	14.27		
L	0.045	0.060	1.15	1.52		
Ν	0.190	0.210	4.83	5.33		
Q	0.100	0.120	2.54	3.04		
R	0.080	0.110	2.04	2.79		
S	0.045	0.055	1.15	1.39		
Т	0.235	0.255	5.97	6.47		
U	0.000	0.050	0.00	1.27		
V	0.045		1.15			
Ζ		0.080		2.04		

STYLE 4:

PIN 1. MAIN TERMINAL 1 2. MAIN TERMINAL 2

3. GATE

4. MAIN TERMINAL 2

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone:** 303-675-2175 or 800-344-3860 Toll Free USA/Canada **Fax:** 303-675-2176 or 800-344-3867 Toll Free USA/Canada **Email:** ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.