


AIGaAs RED MANF260C, MANF280C
GREEN MANF460C, MANF480C
HIGH EFF. RED MANF960C, MANF980C

#### PACKAGE DIMENSIONS



NOTES: Dimensions are in mm (inch).

All pins are 0.5 (0.02) diameter

Tolerances are ± 0.25 (0.1) unless otherwise noted.

#### **FEATURES**

Easy to read digit
Common anode or cathode
Low power consumption
Highly visible bold segments
High brightness with high contrast
White segments on a grey face
Directly compatible with integrated
circuits
Rugged plastic/epoxy construction

### **APPLICATIONS**

WW.DZSC.COM

Digital readout displays Instrument panels

### **MODEL NUMBERS**

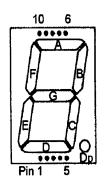
Part number Color **Description** MANF260C AlGaAs Red Common Anode; right hand decimal **AIGaAS Red** MANF280C Common Cathode: right hand decimal MANF460C Green Common Anode; right hand decimal MANF480C Green Common Cathode; right hand decimal MANF960C High efficiency red Common Anode; right hand decimal MANF980C High efficiency red Common Cathode; right hand decima (For other color options, contact your local area Sales Office)

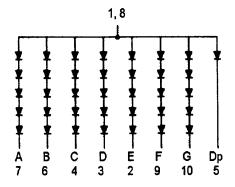
191



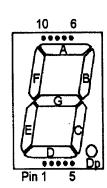
### **ABSOLUTE MAXIMUM RATING** (T<sub>A</sub>=25°C unless otherwise specified)

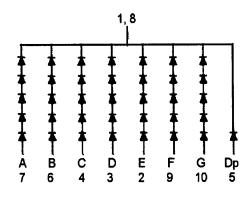
|                                                                         | AlGaAs Red           | Green | High Eff. Red |       |
|-------------------------------------------------------------------------|----------------------|-------|---------------|-------|
|                                                                         | MANF                 | MANF  | MANF          |       |
|                                                                         | 260C                 | 460C  | 960C          |       |
| Part number                                                             | 280C                 | 480C  | 980C          | Unit  |
| Continuous forward current (I                                           | .)                   |       |               |       |
| Per die                                                                 | 25                   | 30    | 30            | mA    |
| Peak forward current per die (<br>(at f = 10.0 KHz, Duty factor = 1/10) | l <sub>f</sub> ) 200 | 90    | 90            | mA    |
| Power dissipation (P <sub>D</sub> ) per die                             | 100*                 | 70 *  | 70*           | mW    |
| *Derate linearly from 25°C                                              | 0.5                  | 0.33  | 0.33          | mW/°C |
| Reverse voltage per dice                                                |                      |       |               | 5V    |
| Operating and Storage temper                                            | 40°C to +85°C        |       |               |       |
| Lead soldering time (at 1/16 incl                                       |                      |       |               |       |


## **ELECTRO - OPTICAL CHARACTERISTICS** (T<sub>A</sub> = 25°C unless otherwise specified)


|                                                | AlGaAs Red | Green | High Eff. Red |                        |
|------------------------------------------------|------------|-------|---------------|------------------------|
|                                                | MANF       | MANF  | MANF          |                        |
|                                                | 260C       | 460C  | 960C          | Test                   |
| Part number                                    | 280C       | 480C  | 980C          | Condition              |
| Luminous intensity (ucd)                       |            |       |               |                        |
| typical                                        | 9000       | 7900  | 6300          | $I_F = 20 \text{ mA}$  |
| Forward voltage (V <sub>F</sub> )              |            |       |               |                        |
| typical                                        | 9.0        | 10.5  | 10.0          | l, = 20 mA             |
| maximum                                        | 12.5       | 14.0  | 14.0          | l, = 20 mA             |
| Peak wavelength (nm)                           | 660        | 570   | 635           | $I_F = 20 \text{ mA}$  |
| Spectral line half width (nm                   | ) 20       | 30    | 45            | $I_F = 20 \text{ mA}$  |
| Reverse breakdown voltage (V <sub>R</sub> ) 10 |            | 10    | 10            | I <sub>R</sub> =100 uA |

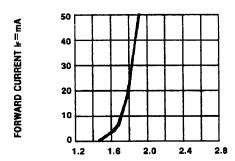



#### **PINOUT**

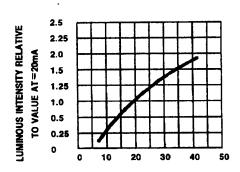

#### MANFX60C - Common Anode



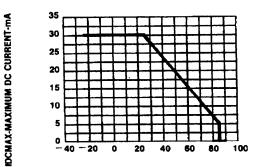



#### MANFX80C - Common Cathode

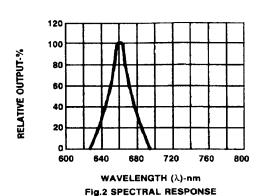


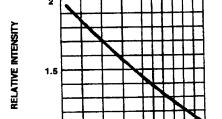






### **GRAPHICAL DETAIL: AlGaAs Red** (T<sub>A</sub> = 25°C unless otherwise specified)



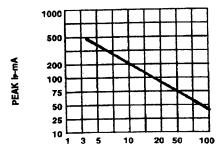

FORWARD VOLTAGE (Vr)-VOLTS
Fig.1 FORWARD CURRENT VS. FORWARD VOLTAGE.




Ir-FORWARD CURRENT-MA
Fig.3 RELATIVE LUMINOUS INTENSITY
VS. FORWARD CURRENT



TA AMBIENT TEMPERATURE C Fig.4 MAXIMUM ALLOWABLE DC CURRENT PER SEGMENT VS. A FUNCTION OF AMBIENT TEMPERATURE.

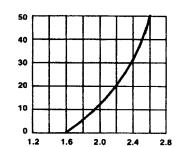




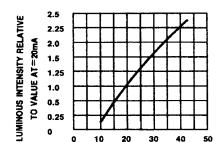

20

DUTY CYCLE % PER SEGMENT
(AVERAGE Is=10mA)
Fig.5 LUMINOUS INTENSITY VS. DUTY CYCLE

40

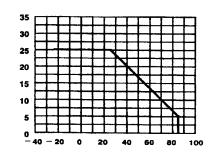



DUTY CYCLE %
Fig. 6 MAX PEAK CURRENT VS. DUTY CYCLE %
(REFRESH RATE f=1 KHz)



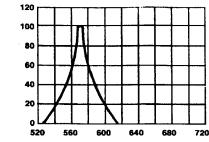

**GRAPHICAL DETAIL: Green** (T<sub>A</sub> = 25°C unless otherwise specified)



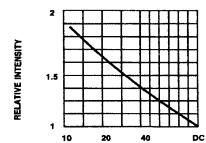



FORWARD VOLTAGE (Vr)-VOLTS
Fig.1 FORWARD CURRENT VS. FORWARD VOLTAGE.

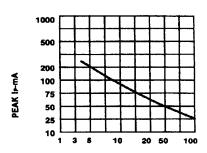



IF-FORWARD CURRENT-MA
Fig.3 RELATIVE LUMINOUS INTENSITY
VS. FORWARD CURRENT





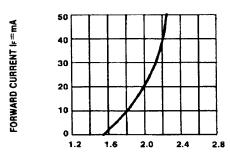

TA AMBIENT TEMPERATURE © Fig.4 MAXIMUM ALLOWABLE DC CURRENT PER SEGMENT CS. A FUNCTION OF AMBIENT TEMPERATURE.



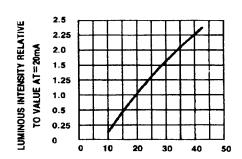



WAVELENGTH (λ)-nm Fig.2 SPECTRAL RESPONSE

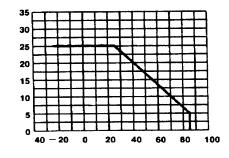



DUTY CYCLE % PER SEGMENT
(AVERAGE I:=10mA)
Fig.5 LUMINOUS INTENSITY VS. DUTY CYCLE



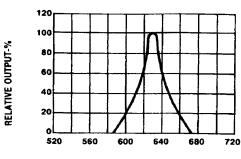

DUTY CYCLE %
Fig. 6 MAX PEAK CURRENT VS. DUTY CYCLE %
(REFRESH RATE f=1 KH2)



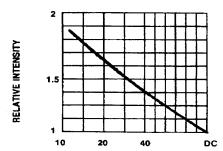

## **GRAPHICAL DETAIL: High Efficiency Red** (T<sub>A</sub> = 25°C unless otherwise specified)



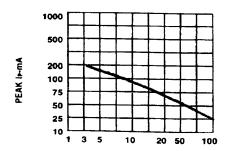
FORWARD VOLTAGE (V<sub>F</sub>)-VOLTS
Fig.1 FORWARD CURRENT VS. FORWARD VOLTAGE.




Ir-FORWARD CURRENT-MA
Fig.3 RELATIVE LUMINOUS INTENSITY
VS. FORWARD CURRENT




DCMAX-MAXIMUM DC CURRENT-mA


TA AMBIENT TEMPERATURE C
FIG.4 MAXIMUM ALLOWABLE DC CURRENT PER
SEGMENT VS. A FUNCTION OF AMBIENT
TEMPERATURE.



WAVELENGTH ( $\lambda$ )-nm Fig.2 SPECTRAL RESPONSE



DUTY CYCLE % PER SEGMENT
(AVERAGE Ir=10mA)
Fig.5 LUMINOUS INTENSITY VS. DUTY CYCLE



DUTY CYCLE %
Fig. 6 MAX PEAK CURRENT VS. DUTY CYCLE %
(REFRESH RATE f=1 KHz)



#### **DISCLAIMER**

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.