RELIABILITY REPORT

FOR MAX1037EKA

PLASTIC ENCAPSULATED DEVICES

November 19, 2002

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR.
SUNNYVALE, CA 94086

Written by

Jim Pedicord Quality Assurance
Reliability Lab Manager

Bryan J. Preeshl
Quality Assurance
Executive Director

Conclusion

The MAX1037 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

I.Device Description
II.Manufacturing Information
III.Packaging Information
IV.Die Information
V.Quality Assurance Information
VI.Reliability Evaluation
......Attachments

I. Device Description

A. General

The MAX1037 low-power, 8-bit, multichannel, analog-to-digital converter (ADCs) features internal track/hold (T/H), voltage reference, clock, and an $1^{2} \mathrm{C}$-compatible 2 -wire serial interface. This device operates from a single supply and requires only $350 \mu \mathrm{~A}$ at the maximum sampling rate of 188 ksps . Auto-Shutdown ${ }^{\mathrm{TM}}$ powers down the device between conversions reducing supply current to less than $1 \mu \mathrm{~A}$ at low throughput rates. The MAX1037 has four analog input channels. The analog inputs are software configurable for unipolar or bipolar and single-ended or pseudo-differential operation.

The full-scale analog input range is determined by the internal reference or by an externally applied reference voltage ranging from 1 V to V_{DD}. The MAX1037 features a 2.048 V internal.

The MAX1037 is available in a 8-pin SOT23 package.
B. Absolute Maximum Ratings

Item
VDD to GND
AIN0-AIN11, REF to GND
SDA, SCL to GND
Maximum Current Into Any Pin
Operating Temperature Range
Junction Temperature
Storage Temperature Range
Lead Temperature (soldering, 10s)
Continuous Power Dissipation ($\mathrm{TA}=+70^{\circ} \mathrm{C}$) 8-Pin SOT23
Derates above $+70^{\circ} \mathrm{C}$
8-Pin SOT23

Rating

-0.3 V to +6 V
-0.3 V to the lower of (VDD +0.3 V) and +6 V
-0.3 V to +6 V
$\pm 50 \mathrm{~mA}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$
$-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+300^{\circ} \mathrm{C}$
567 mW
$7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

II. Manufacturing Information

A. Description/Function:
B. Process:
C. Number of Device Transistors:
D. Fabrication Location:
E. Assembly Location:
F. Date of Initial Production:

III. Packaging Information

A. Package Type:
B. Lead Frame:
C. Lead Finish:
D. Die Attach:
E. Bondwire:
F. Mold Material:
G. Assembly Diagram:
H. Flammability Rating:
2.7 V to 5.5 V , Low-Power, 12-Channel 2-Wire Serial 8-Bit ADC

S6 BiCMOS process
6283

California, USA

Malaysia
April, 2002

8-Lead SOT

Copper

Solder Plate

Non-Conductive Epoxy
Gold (1 mil dia.)

Epoxy with silica filler
Buildsheet \# 05-2101-0053
Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard JESD22-A112: Level 1

IV. Die Information

A. Dimensions:	66×45 mils
B. Passivation:	$\mathrm{Si}_{3} \mathrm{~N}_{4} / \mathrm{SiO}_{2}$ (Silicon nitride/ Silicon dioxide)
C. Interconnect:	$\mathrm{TiW} / \mathrm{AlCu} / \mathrm{TiWN}$
D. Backside Metallization:	None
E. Minimum Metal Width:	.6 microns (as drawn)
F. Minimum Metal Spacing:	.6 microns (as drawn)
G. Bondpad Dimensions:	5 mil. Sq.
H. Isolation Dielectric:	SiO_{2}
I. Die Separation Method:	$\mathrm{Wafer}^{2} \mathrm{Saw}$

V. Quality Assurance Information

A. Quality Assurance Contacts:
Jim Pedicord (Reliability Lab Manager)
Bryan Preeshl (Executive Director of QA)
Kenneth Huening (Vice President)
B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet. 0.1% For all Visual Defects.
C. Observed Outgoing Defect Rate: < 50 ppm
D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the $135^{\circ} \mathrm{C}$ biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:
$\lambda=\frac{1}{\text { MTTF }}=\frac{1.83}{192 \times 4389 \times 160 \times 2}$ (Chi square value for MTTF upper limit)
Δ

$\lambda=6.79 \times 10^{-9} \quad$| Temperature Acceleration factor assuming an activation energy of 0.8 eV |
| :--- |

$\lambda=6.79$ F.I.T. $\left(60 \%\right.$ confidence level @ $25^{\circ} \mathrm{C}$)

This low failure rate represents data collected from Maxim's reliability qualification and monitor programs. Maxim also performs weekly Burn-In on samples from production to assure reliability of its processes. The reliability required for lots which receive a burn-in qualification is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Maxim performs failure analysis on rejects from lots exceeding this level. The Burn-In Schematic (Spec.\# 06-5759) shows the static circuit used for this test. Maxim also performs 1000 hour life test monitors quarterly for each process. This data is published in the Product Reliability Report (RR-1M) located on the Maxim website at http://www.maxim-ic.com .
B. Moisture Resistance Tests

Maxim evaluates pressure pot stress from every assembly process during qualification of each new design. Pressure Pot testing must pass a 20% LTPD for acceptance. Additionally, industry standard $85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}$ or HAST tests are performed quarterly per device/package family.
C. E.S.D. and Latch-Up Testing

The AC32-1 die type has been found to have all pins able to withstand a transient pulse of $\pm 2500 \mathrm{~V}$, per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of $\pm 250 \mathrm{~mA}$.

Table 1
Reliability Evaluation Test Results

MAX1037EKA

Mechanical Stress (Note 2)

Temperature	$-65^{\circ} \mathrm{C} / 150^{\circ} \mathrm{C}$	DC Parameters	77
Cycle	1000 Cycles		0
	Method 1010		

Note 1: Life Test Data may represent plastic D.I.P. qualification lots.
Note 2: Generic Package/Process data

TABLE II. Pincombination tobetested. $1 / 2$

	Teminal A (Each pin individually connected to terminal A with the other floating)	Terminal B (The common combination of all like-named pins connected to terminal B)
1.	All pins except Vss1 3/	All Vos pins
2.	All input and output pins	All other input-output pins

1/ Table ll is restated in narrative form in 3.4 below.
2/ No connects are not to be tested.
3/ Repeat pin combination I for each named Power supply and for ground

3.4 Pincombinations to betested
a. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open.
b. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., $V_{s s 1}$, or $V_{s s 2}$ or $V_{s s 3}$ or $V_{c c 1}$, or $V_{c c 2}$) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.
c. Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.

Mil Std 883D
Method3015.7
Notice 8

