

DATA SHEET

MB2541

Dual octal buffer line driver (3-State)

Product specification

Supersedes data of 1993 Aug 18

IC23 Data Handbook

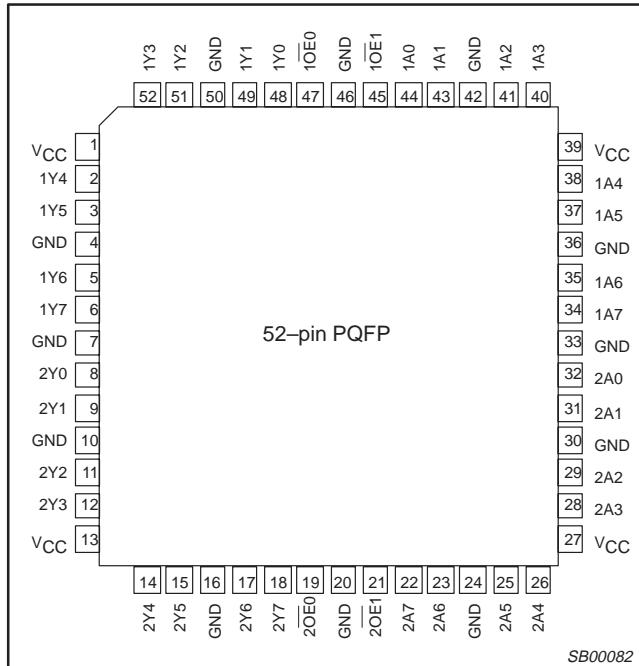
1998 Jan 16

16-bit buffer/line drivers (3-State)

MB2541

FEATURES

- Two 8-bit bus interfaces
- Power-up 3-State
- Multiple V_{CC} and GND pins minimize switching noise
- Provides ideal interface and increases fan-out of MOS Microprocessors
- 3-State buffers sink 64mA and source 32mA
- Latch-up protection exceeds 500mA per Jedec Std 17
- ESD protection exceeds 2000 V per MIL STD 883 Method 3015 and 200 V per Machine Model
- Inputs are disabled during 3-State mode


QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS $T_{amb} = 25^\circ\text{C}; \text{GND} = 0\text{V}$	TYPICAL	UNIT
t_{PLH} t_{PHL}	Propagation delay nIx to nYx	$C_L = 50\text{pF}$; $V_{CC} = 5\text{V}$	3.0 3.1	ns
C_{IN}	Input capacitance	$V_I = 0\text{V}$ or V_{CC}	4	pF
C_{OUT}	Output capacitance	$V_O = 0\text{V}$ or V_{CC} ; 3-State	7	pF
I_{CCZ}	Total supply current	Outputs disabled; $V_{CC} = 5.5\text{V}$	65	μA

ORDERING INFORMATION

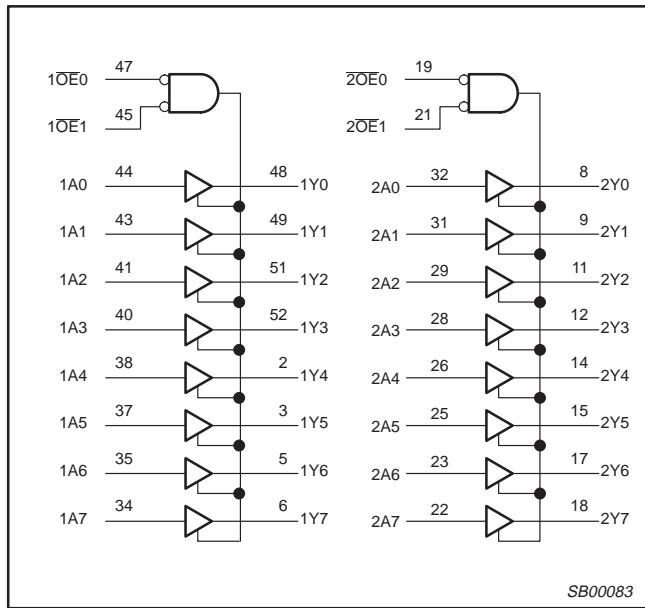
PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
52-pin plastic Quad Flat Pack	-40°C to +85°C	MB2541 BB	MB2541 BB	SOT379-1

PIN CONFIGURATION

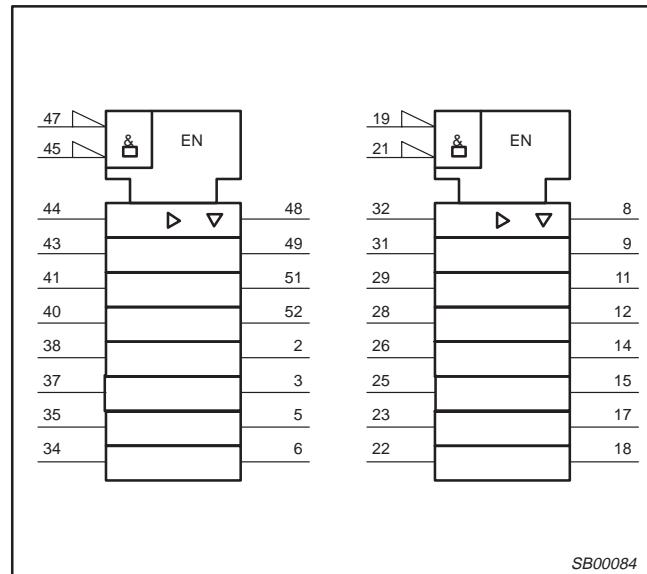
DESCRIPTION

The MB2541 high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive.

The MB2541 has two 8-bit buffers that are ideal for driving bus lines. The outputs are all capable of sinking 64mA and sourcing 32mA.


PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
44, 43, 41, 40, 38, 37, 35, 34, 32, 31, 29, 28, 26, 25, 23, 22	1A0 – 1A7 2A0 – 2A7	Data inputs
48, 49, 51, 52, 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18	1Y0 – 1Y7, 2Y0 – 2Y7	Data outputs
47, 45, 19, 21	1OE0, 1OE1, 2OE0, 2OE1	Output enables
4, 7, 10, 16, 20, 24, 30, 33, 36, 42, 46, 50	GND	Ground (0V)
1, 13, 27, 39	V _{CC}	Positive supply voltage


16-bit buffer/line drivers (3-State)

MB2541

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

INPUTS		OUTPUTS	
nOE0	nOE1	nlx	nYx
L	L	L	L
L	L	H	H
X	H	X	Z
H	X	X	Z

ABSOLUTE MAXIMUM RATINGS^{1, 2}

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
I _{IK}	DC input diode current	V _I < 0	-18	mA
V _I	DC input voltage ³		-1.2 to +7.0	V
I _{OK}	DC output diode current	V _O < 0	-50	mA
V _{OUT}	DC output voltage ³	output in Off or High state	-0.5 to +5.5	V
I _{OUT}	DC output current	output in Low state	128	mA
T _{stg}	Storage temperature range		-65 to 150	°C

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.
3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

16-bit buffer/line drivers (3-State)

MB2541

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT
		Min	Max	
V_{CC}	DC supply voltage	4.5	5.5	V
V_I	Input voltage	0	V_{CC}	V
V_{IH}	High-level input voltage	2.0		V
V_{IL}	Low-level Input voltage		0.8	V
I_{OH}	High-level output current		-32	mA
I_{OL}	Low-level output current		64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	0	10	ns/V
T_{amb}	Operating free-air temperature range	-40	+85	°C

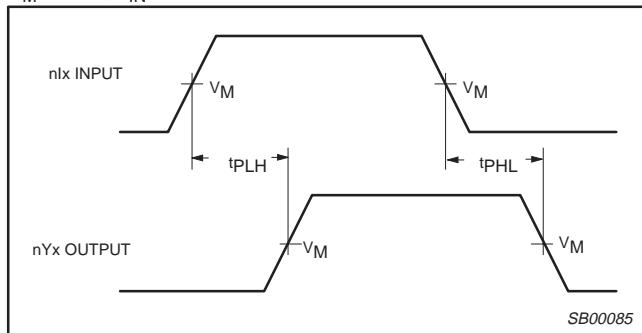
DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT	
			$T_{amb} = +25^{\circ}\text{C}$		$T_{amb} = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$		
			Min	Typ	Max		
V_{IK}	Input clamp voltage	$V_{CC} = 4.5\text{V}$; $I_{IK} = -18\text{mA}$		-0.9	-1.2	-1.2	V
V_{OH}	High-level output voltage	$V_{CC} = 4.5\text{V}$; $I_{OH} = -3\text{mA}$; $V_I = V_{IL}$ or V_{IH}	2.5	2.9		2.5	V
		$V_{CC} = 5.0\text{V}$; $I_{OH} = -3\text{mA}$; $V_I = V_{IL}$ or V_{IH}	3.0	3.4		3.0	V
		$V_{CC} = 4.5\text{V}$; $I_{OH} = -32\text{mA}$; $V_I = V_{IL}$ or V_{IH}	2.0	2.4		2.0	V
V_{OL}	Low-level output voltage	$V_{CC} = 4.5\text{V}$; $I_{OL} = 64\text{mA}$; $V_I = V_{IL}$ or V_{IH}		0.42	0.55	0.55	V
I_I	Input leakage current	$V_{CC} = 5.5\text{V}$; $V_I = \text{GND}$ or 5.5V		± 0.01	± 1.0	± 1.0	μA
I_{OFF}	Power-off leakage current	$V_{CC} = 0.0\text{V}$; V_O or $V_I \leq 4.5\text{V}$		± 5.0	± 100	± 100	μA
I_{PU}/I_{PD}	Power-up/down 3-State output current	$V_{CC} = 2.0\text{V}$; $V_O = 0.5\text{V}$; $V_I = \text{GND}$ or V_{CC} ; $V_{OE} = V_{CC}$		± 5.0	± 50	± 50	μA
I_{OZH}	3-State output High current	$V_{CC} = 5.5\text{V}$; $V_O = 2.7\text{V}$; $V_I = V_{IL}$ or V_{IH}		5.0	50	50	μA
I_{OZL}	3-State output Low current	$V_{CC} = 5.5\text{V}$; $V_O = 0.5\text{V}$; $V_I = V_{IL}$ or V_{IH}		-5.0	-50	-50	μA
I_{CEX}	Output high leakage current	$V_{CC} = 5.5\text{V}$; $V_O = 5.5\text{V}$; $V_I = \text{GND}$ or V_{CC}		5.0	50	50	μA
I_O	Output current ¹	$V_{CC} = 5.5\text{V}$; $V_O = 2.5\text{V}$	-50	-70	-180	-50	mA
I_{CCH}	Quiescent supply current	$V_{CC} = 5.5\text{V}$; Outputs High, $V_I = \text{GND}$ or V_{CC}		65	250	250	μA
I_{CCL}		$V_{CC} = 5.5\text{V}$; Outputs Low, $V_I = \text{GND}$ or V_{CC}		48	60	60	mA
I_{CCZ}		$V_{CC} = 5.5\text{V}$; Outputs 3-State; $V_I = \text{GND}$ or V_{CC}		65	250	250	μA
ΔI_{CC}	Additional supply current per input pin ²	Outputs enabled, one input at 3.4V , other inputs at V_{CC} or GND ; $V_{CC} = 5.5\text{V}$		0.5	1.5	1.5	mA

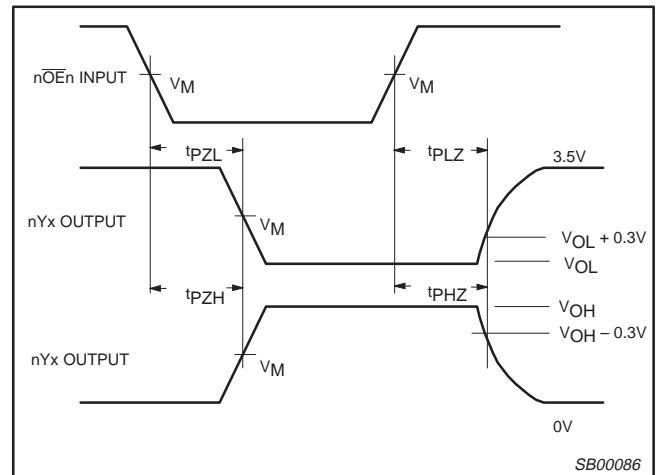
NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
2. This is the increase in supply current for each input at 3.4V .

16-bit buffer/line drivers (3-State)


MB2541

AC CHARACTERISTICS

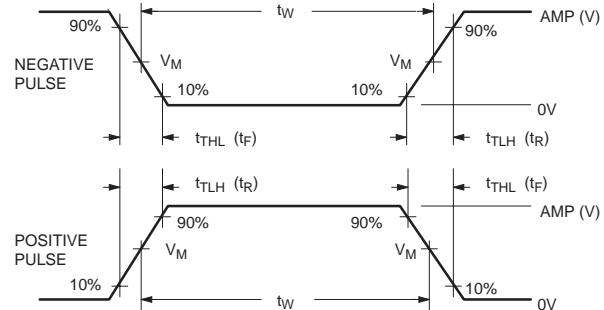
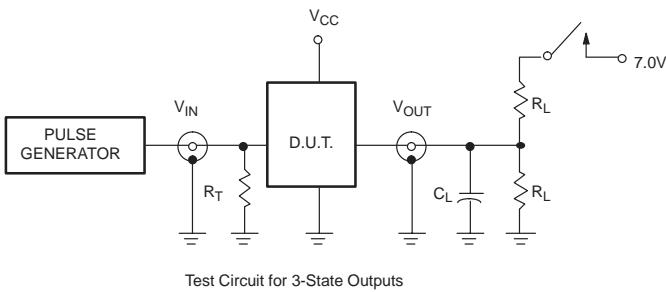

GND = 0V; $t_R = t_F = 2.5\text{ns}$; $C_L = 50\text{pF}$, $R_L = 500\Omega$

SYMBOL	PARAMETER	WAVEFORM	LIMITS					UNIT	
			$T_{\text{amb}} = +25^\circ\text{C}$ $V_{\text{CC}} = +5.0\text{V}$			$T_{\text{amb}} = -40^\circ\text{C to } +85^\circ\text{C}$ $V_{\text{CC}} = +5.0\text{V} \pm 0.5\text{V}$			
			Min	Typ	Max	Min	Max		
t_{PLH} t_{PHL}	Propagation delay nIx to nYx	1	1.2 1.2	3.0 3.1	4.5 4.5	1.2 1.2	5.1 5.1	ns	
t_{PZH} t_{PZL}	Output enable time to High and Low level	2	1.3 2.1	3.6 4.7	5.2 6.1	1.3 2.1	5.8 7.1	ns	
t_{PHZ} t_{PLZ}	Output disable time from High and Low level	2	1.8 1.7	4.3 4.0	6.2 5.4	1.8 1.7	6.8 5.9	ns	

AC WAVEFORMS

 $V_M = 1.5\text{V}$, $V_{\text{IN}} = \text{GND to } 3.0\text{V}$

Waveform 1. Waveforms Showing the Input (An) to Output (Yn) Propagation Delays

Waveform 2. Waveforms Showing the 3-State Output Enable and Disable Times

16-bit buffer/line drivers (3-State)

MB2541

TEST CIRCUIT AND WAVEFORMS

SWITCH POSITION

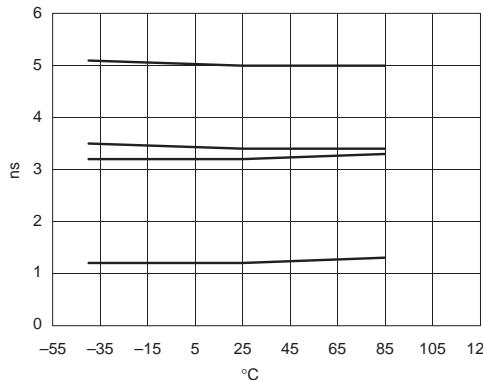
TEST	SWITCH
t_{PLZ}	closed
t_{PZL}	closed
All other	open

DEFINITIONS

R_L = Load resistor; see AC CHARACTERISTICS for value.

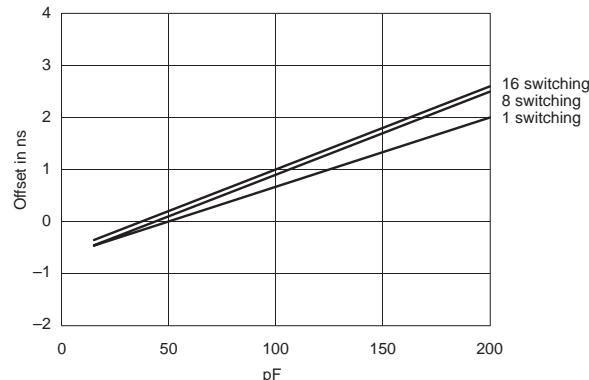
C_L = Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.

R_T = Termination resistance should be equal to Z_{OUT} of pulse generators.

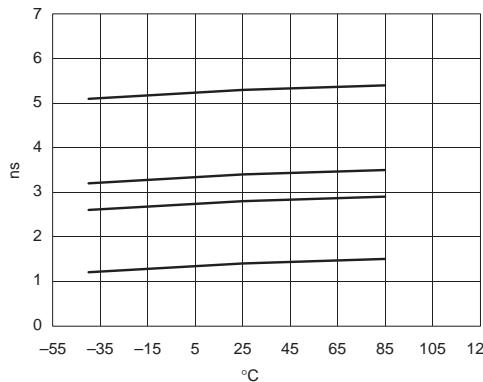

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	t_W	t_R	t_F
MB	3.0V	1MHz	500ns	2.5ns	2.5ns

SB00010

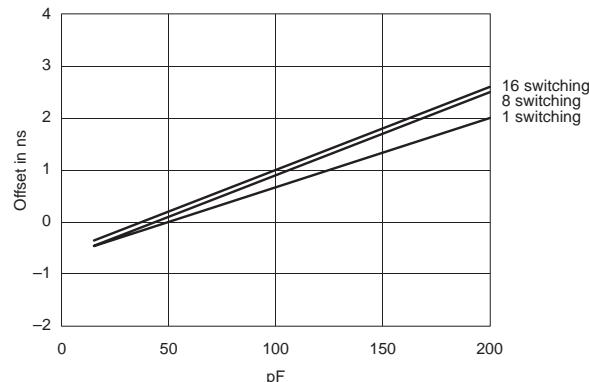
16-bit buffer/line drivers (3-State)


MB2541

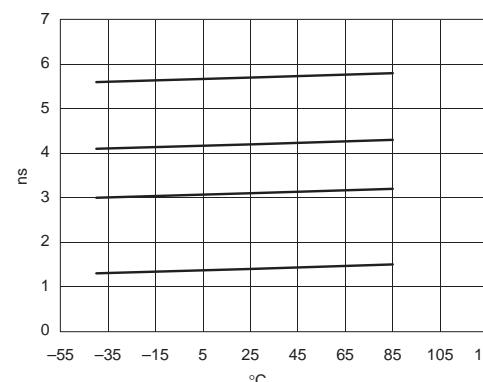
t_{PLH} vs Temperature (T_{amb})
 $C_L = 50\text{pF}$, 1 Output Switching
 nIx to nYx


MAN
 4.5VCC
 5.5VCC
 MIN

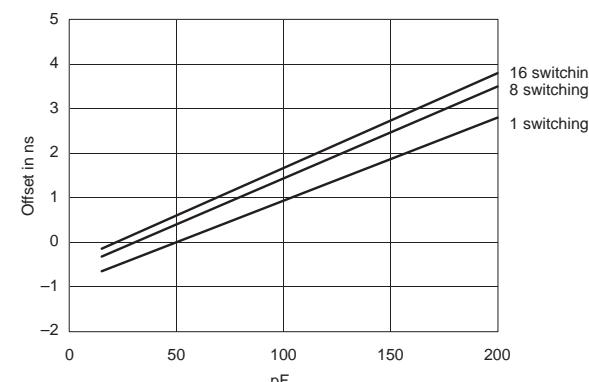
Adjustment of t_{PLH} for
 Load Capacitance and # of Outputs Switching
 nIx to nYx


16 switching
 8 switching
 1 switching

t_{PHL} vs Temperature (T_{amb})
 $C_L = 50\text{pF}$, 1 Output Switching
 nIx to nYx

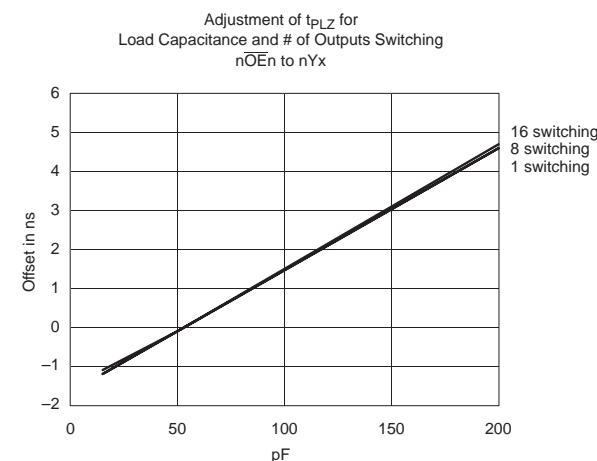
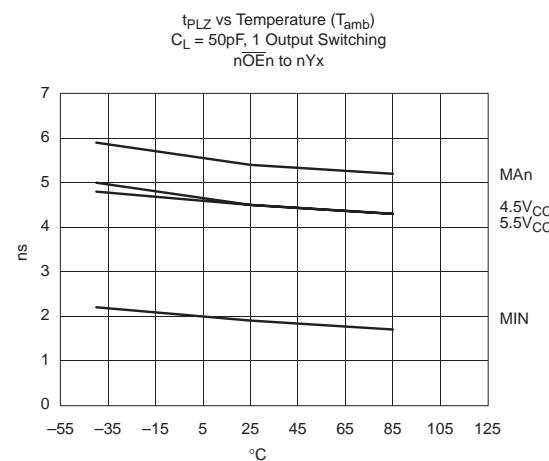
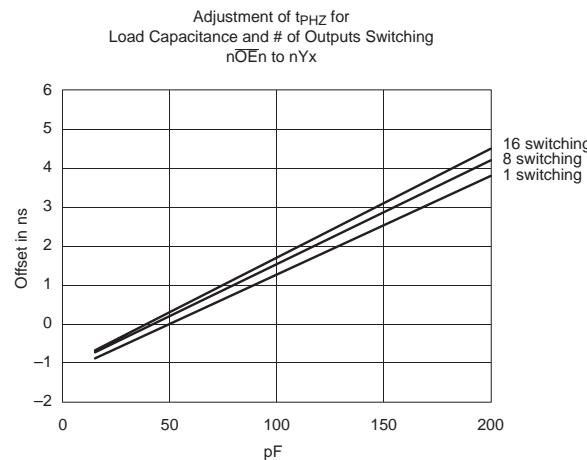
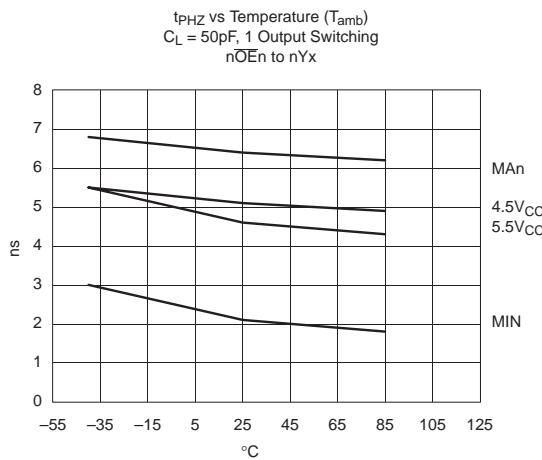
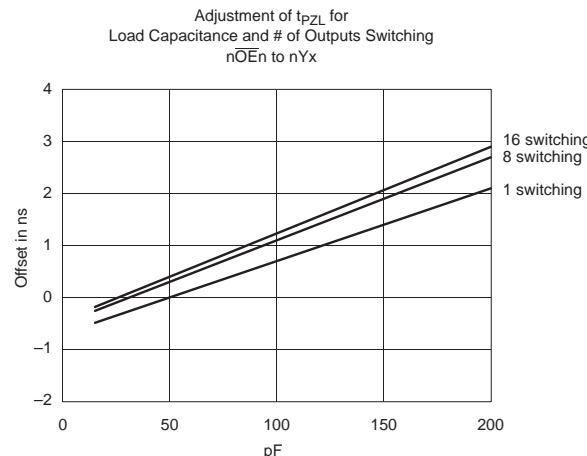
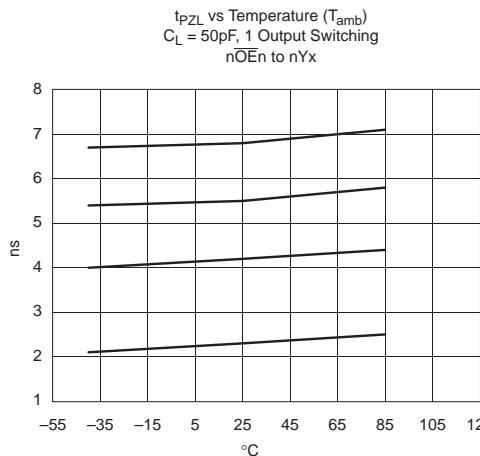

MAN
 4.5VCC
 5.5VCC
 MIN

Adjustment of t_{PHL} for
 Load Capacitance and # of Outputs Switching
 nIx to nYx


16 switching
 8 switching
 1 switching

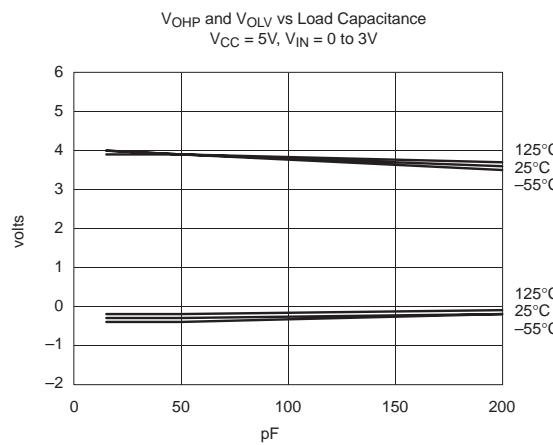
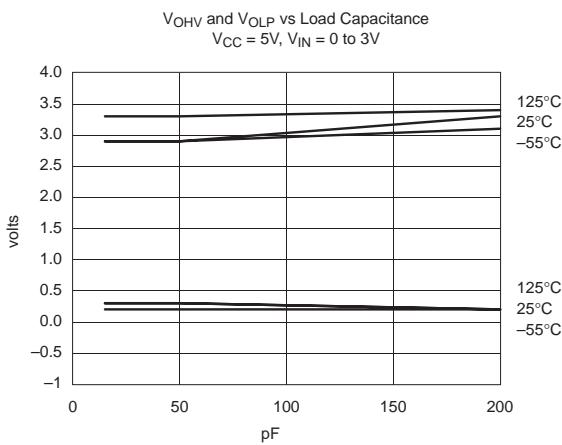
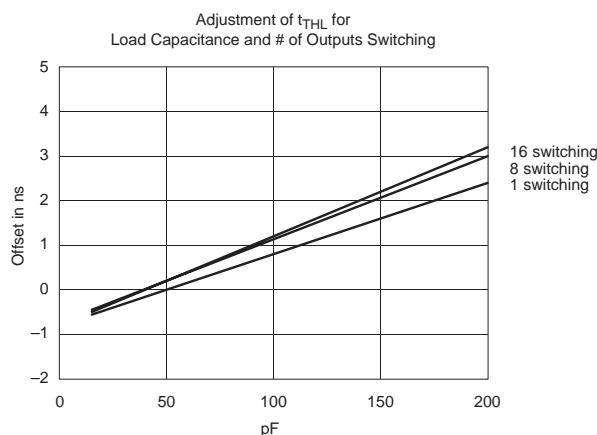
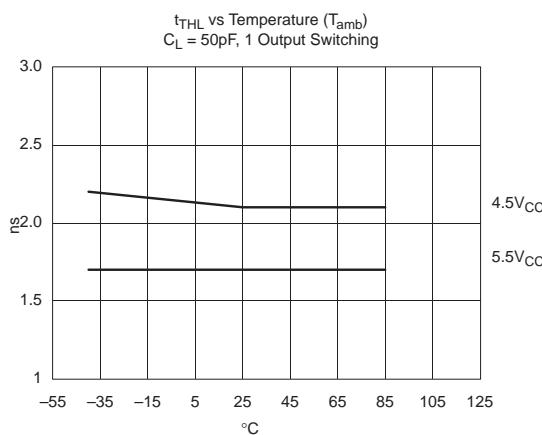
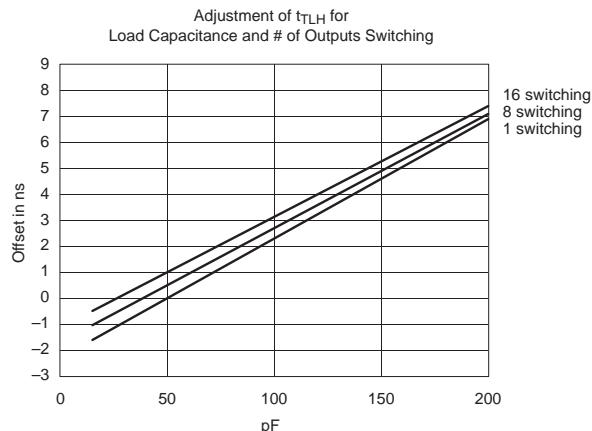
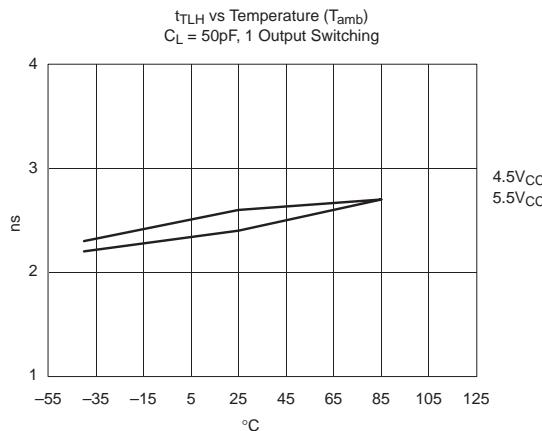
t_{PZH} vs Temperature (T_{amb})
 $C_L = 50\text{pF}$, 1 Output Switching
 nOEn to nYx

MAN
 4.5VCC
 5.5VCC
 MIN







Adjustment of t_{PZH} for
 Load Capacitance and # of Outputs Switching
 nOEn to nYx

16 switching
 8 switching
 1 switching

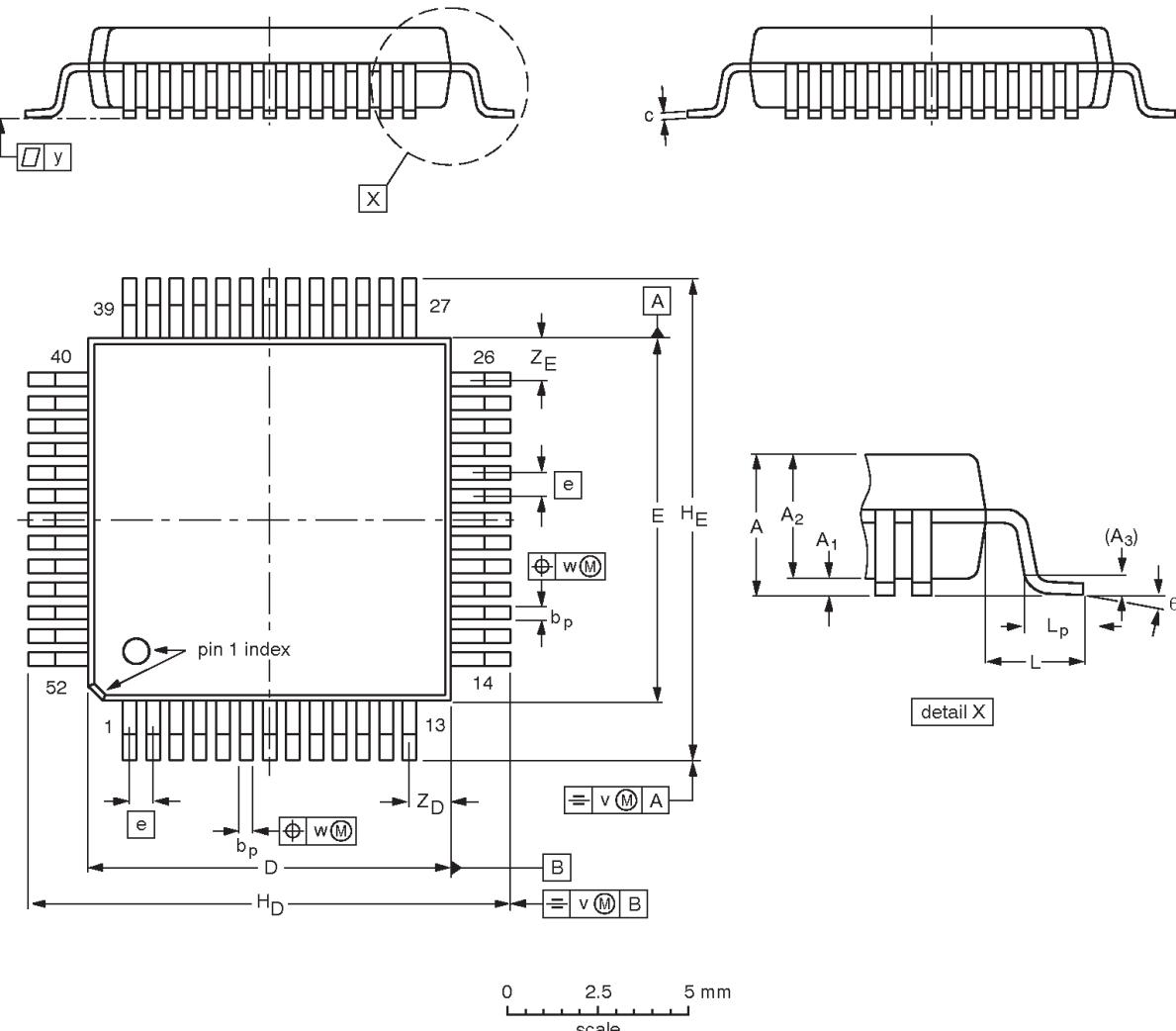
16-bit buffer/line drivers (3-State)







MB2541

SB00088

16-bit buffer/line drivers (3-State)

MB2541



Dual octal buffer line driver (3-State)

MB2541

QFP52: plastic quad flat package; 52 leads (lead length 1.6 mm); body 10 x 10 x 2.0 mm

SOT379-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	b _p	c	D ⁽¹⁾	E ⁽¹⁾	e	H _D	H _E	L	L _p	v	w	y	z _D ⁽¹⁾	z _E ⁽¹⁾	θ
mm	2.45 0.25	0.45 1.95	2.10	0.25	0.38 0.22	0.23 0.13	10.1 9.9	10.1 9.9	0.65	13.45 12.95	13.45 12.95	1.60	0.95 0.65	0.20	0.12	0.10	1.24 0.95	1.24 0.95	7° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT379-1		MO-108			-95-02-04 97-08-04

Dual octal buffer line driver (3-State)

MB2541

NOTES

Dual octal buffer line driver (3-State)

MB2541

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409
Sunnyvale, California 94088-3409
Telephone 800-234-7381

© Copyright Philips Electronics North America Corporation 1998
All rights reserved. Printed in U.S.A.

print code

Document order number:

Date of release: 05-96

9397-750-03512

Let's make things better.