Surface Mount Schottky Power Rectifier Plastic SOD-123 Package

... using the Schottky Barrier principle with a large area metal-to-silicon power diode. Ideally suited for low voltage, high frequency rectification or as free wheeling and polarity protection diodes in surface mount applications where compact size and weight are critical to the system. This package also provides an easy to work with alternative to leadless 34 package style. Because of its small size, it is ideal for use in portable and battery powered products such as cellular and cordless phones, chargers, notebook computers, printers, PDAs and PCMCIA cards. Typical applications are ac/dc and dc-dc converters, reverse battery protection, and "Oring" of multiple supply voltages and any other application where performance and size are critical. These state-of-the-art devices have the following features:

- Guardring for Stress Protection
- Optimized for Very Low Forward Voltage
- 125°C Operating Junction Temperature
- Epoxy Meets UL94, VO at 1/8"
- Package Designed for Optimal Automated Board Assembly
- ESD Ratings: Machine Model, C;
 - Human Body Model, 3B

Mechanical Characteristics

- Reel Options: MBR120VLSFT1 = 3,000 per 7" reel/8 mm tape MBR120VLSFT3 = 10,000 per 13" reel/8 mm tape
- Device Marking: L2V
- Polarity Designator: Cathode Band
- Weight: 11.7 mg (approximately)
- Case: Epoxy, Molded
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Device Meets MSL 1 Requirements

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	20	V
Average Rectified Forward Current (Rated V_R) T_L = 119°C	I _{F(AV)}	1.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Condi- tions, Halfwave, Single Phase, 60 Hz)	I _{FSM}	45	A
Storage Temperature Range	T _{stg}	-65 to +125	°C
Operating Junction Temperature	TJ	-65 to +125	°C
Voltage Rate of Change (Rated V_R)	dv/dt	1000	V/μs

ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 1.0 AMPERES 20 VOLTS

SOD-123FL CASE 498 PLASTIC

DEVICE MARKING

L2V = Specific Device Code D = Date Code

ORDERING INFORMATION

Device	Package	Shipping
MBR120VLSFT1	SOD-123FL	3000/Tape & Reel
MBR120VLSFT3	SOD-123FL	10,000/Tape & Reel

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance - Junction-to-Lead (Note 1)		26	°C/W
Thermal Resistance - Junction-to-Lead (Note 2)	R _{til}	21	
Thermal Resistance - Junction-to-Ambient (Note 1)	R _{tia}	325	
Thermal Resistance - Junction-to-Ambient (Note 2)	R _{tja}	82	

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	T _J = 25°C	T _J = 85°C	Unit
Maximum Instantaneous Forward Voltage (Note 3)	V _F			V
$(I_{\rm F} = 0.1 {\rm A})$		0.275	0.205	
$(I_{F} = 0.5 \text{ A})$		0.315	0.270	
(I _F = 1.0 A)		0.340	0.300	
Maximum Instantaneous Reverse Current (Note 3)	I _R			mA
(Rated dc Voltage)		0.60	15	

1. Mounted with minimum recommended pad size, PC Board FR4.

2. Mounted with 1 in. copper pad (Cu area 700 mm²). 3. Pulse Test: Pulse Width = $300 \ \mu$ s, Duty Cycle $\leq 2\%$.

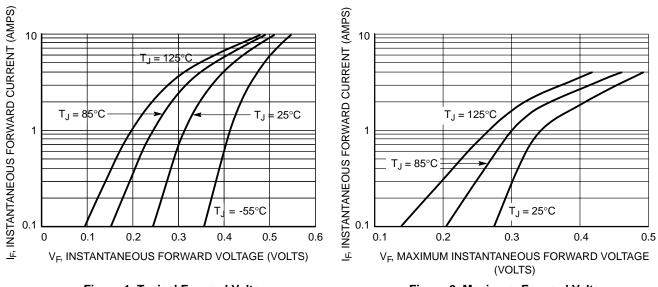


Figure 2. Maximum Forward Voltage

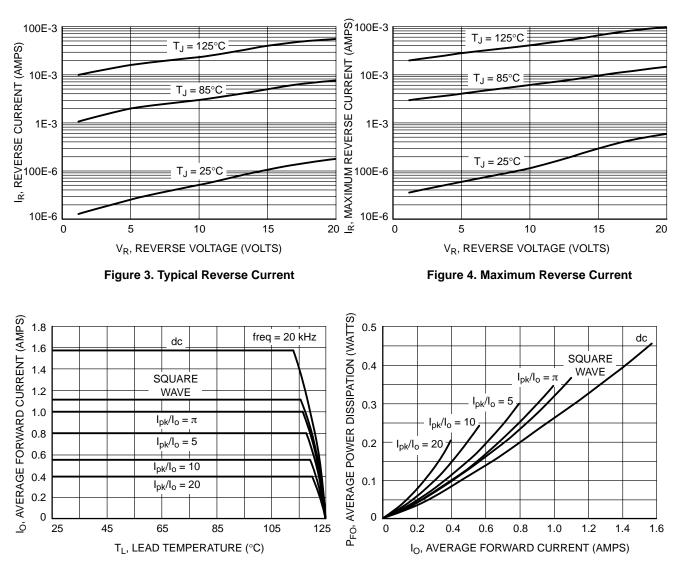
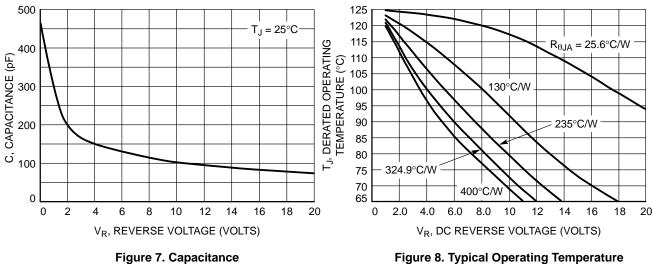



Figure 5. Current Derating

Figure 6. Forward Power Dissipation

Derating*

* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_J therefore must include forward and reverse power effects. The allowable operating T_J may be calculated from the equation: $T_J = T_{Jmax} - r(t)(Pf + Pr)$ where

r(t) = thermal impedance under given conditions,

Pf = forward power dissipation, and

Pr = reverse power dissipation

This graph displays the derated allowable T_J due to reverse bias under DC conditions only and is calculated as $T_J = T_{Jmax} - r(t)Pr$, where r(t) = Rthja. For other power applications further calculations must be performed.

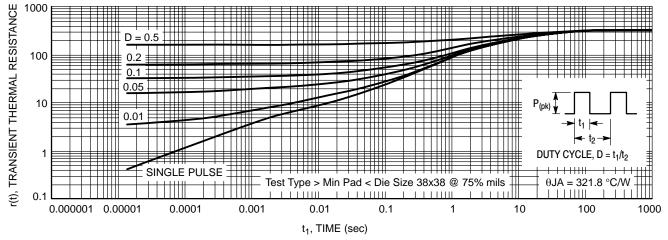
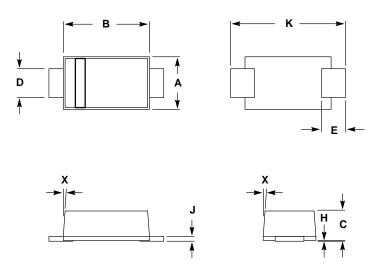
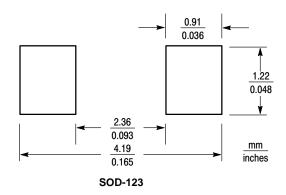



Figure 9. Thermal Response

PACKAGE DIMENSIONS

SOD-123LF CASE 498-01 ISSUE O



NOTES:

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSIONS D AND J ARE TO BE MEASURED ON FLAT SECTION OF THE LEAD: BETWEEN 0.10 AND 0.25 MM FROM THE LEAD TIP. 5. DIMENSION X IS A DEGREE ANGLE.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	1.50	1.80		
В	2.50	2.90		
C	0.90	1.00		
D	0.70	1.10		
Н	0.00	0.10		
J	0.10	0.20		
E	0.55	0.95		
K	3.40	3.80		
X	0	8		
-				

RECOMMENDED FOOTPRINT FOR SOD-123FL

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" protoces are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone:** 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Final: 303-675-2175 Of 800-344-3867 Toll Free USA/Canada Fax: 303-675-2176 of 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.

MBR120VLSFT1

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com