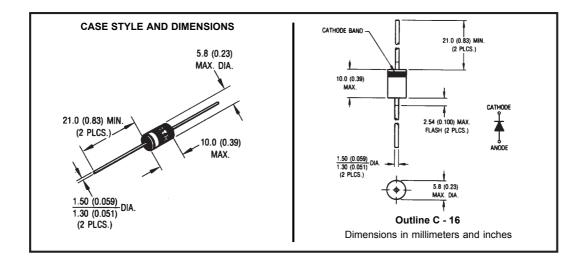
International

SCHOTTKY RECTIFIER

Major Ratings and Characteristics

Characteristics	Values	Units
I _{F(AV)} Rectangular waveform	3.0	A
V _{RRM}	50/60	V
I _{FSM} @tp=5µssine	460	А
V _F @3 Apk, T _J = 25°C	0.73	v
Т	-40 to 150	°C

3.0 Amp


MBR350

MBR360

Description/ Features

The MBR350, MBR360 axial leaded Schottky rectifier has been optimized for very low forward voltage drop, with moderate leakage. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

- · Low profile, axial leaded outline
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- · Lead-Free plating

www.irf.com

MBR350, MBR360

Bulletin PD-20594 rev. C 12/04

International **IOR** Rectifier

Voltage Ratings

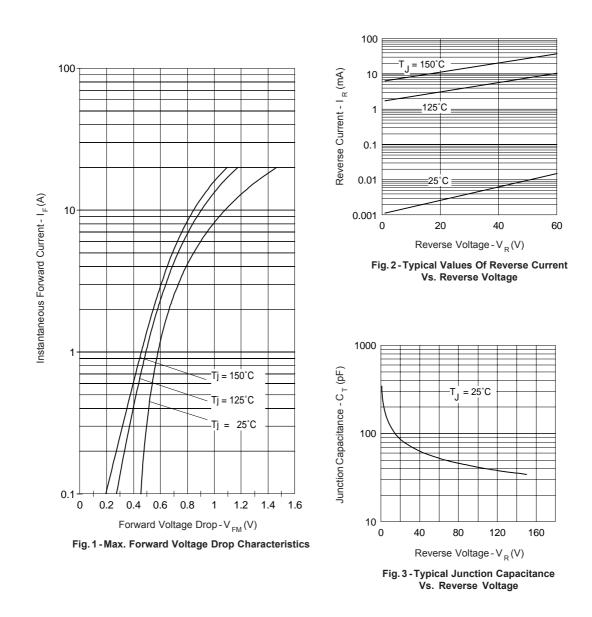
Part number	MBR350	MBR360	
V _R Max. DC Reverse Voltage (V)	50	60	
V _{RWM} Max. Working Peak Reverse Voltage (V)		00	

Absolute Maximum Ratings

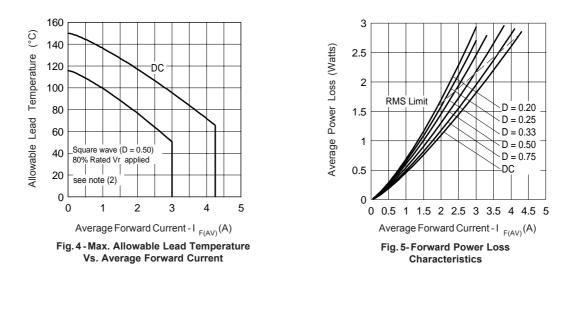
	Parameters	Value	Units	Conditions		
I _{F(AV)}	Max. Average Forward Current	3.0	A	50% duty cycle @ $T_L = 50^{\circ}$ C, re	ectangular wave form	
	* See Fig. 4					
I _{FSM}	Max. Peak One Cycle Non-Repetitive	460	Α	5µs Sine or 3µs Rect. pulse	Following any rated load condition and wit	
	Surge Current * See Fig. 6	80		10ms Sine or 6ms Rect. pulse	rated V _{RRM} applied	
E _{AS}	Non-Repetitive Avalanche Energy	5.0	mJ	$T_J = 25 ^{\circ}C, I_{AS} = 1 \text{Amps}, L = 10 \text{mH}$		
I _{AR}	Repetitive Avalanche Current	1.0	Α	Current decaying linearly to zero in 1 µsec		
				Frequency limited by $T_J max. V_J$	$_{A}$ = 1.5 x V _R typical	

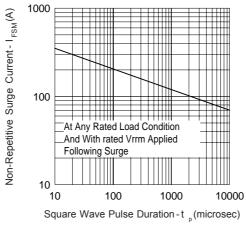
Electrical Specifications

	Parameters	Value	Units	C	Conditions
V _{FM}	Max. Forward Voltage Drop	0.58	V	@ 1.0A	
	* See Fig. 1 (1)	0.73	V	@ 3.0A	T _J = 25 °C
		1.06	V	@ 9.4A	-
		0.49	V	@ 1.0A	
		0.64	V	@ 3.0A	T _J = 125 °C
		0.89	V	@ 9.4A	
I _{RM}	Max. Reverse Leakage Current	0.6	mA	T _J = 25 °C	
	* See Fig. 2 (1)	8	mA	T _J = 100 °C	V_{R} = rated V_{R}
		15	mA	T _J = 125 °C	
CT	Typical Junction Capacitance	190	pF	$V_R = 5V_{DC}$ (test signal range 100Khz to 1Mhz) 25°C	
Ls	Typical Series Inductance	9.0	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	10000	V/µs	(Rated V _R)	


(1) Pulse Width < 300µs, Duty Cycle <2%

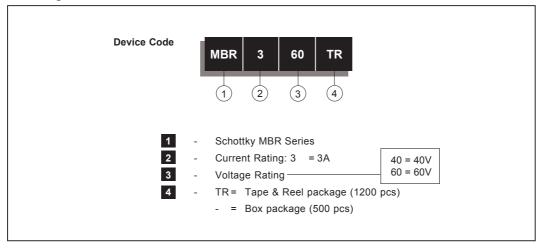
Thermal-Mechanical Specifications


	Parameters	Value	Units	Conditions
TJ	Max. Junction Temperature Range(*)	-40 to 150	°C	
T _{stg}	Max. Storage Temperature Range	-40 to 150	°C	
R _{thJL}	Typical Thermal Resistance Junction	30	°C/W	DC operation (* See Fig. 4)
	to Lead (**)			
wt	Approximate Weight	1.2 (0.042)	g (oz.)	
	Case Style	C - 16		


 $\binom{*}{dTj} \frac{dPtot}{dTj} < \frac{1}{Rth(j-a)}$ thermal runaway condition for a diode on its own heatsink

(**) Mounted 1 inch square PCB, thermal probe connected to lead 2mm from package

Bulletin PD-20594 rev. C 12/04



(2) Formula used: $T_c = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)} / D)$ (see Fig. 6); $Pd_{REV} = Inverse Power Loss = V_{R1} \times I_R (1 - D)$; $I_R @ V_{R1} = 80\%$ rated V_R

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free. Qualification Standards can be found on IR's Web site.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 12/04

www.irf.com