MBRS360TRPbF

International **ICR** Rectifier

SCHOTTKY RECTIFIER

3 Amp

 $I_{F(AV)} = 3.0 \text{Amp}$ $V_R = 60V$

major ratingo ana onaraotoriotico						
Characteristics	Value	Units				
I _{F(AV)} Rectangular waveform	3.0	A				
V _{RRM}	60	V				
I _{FSM} @t _p =5µs sine	790	А				
V _F @3.0Apk,T _J =125°C	0.61	V				
T _J range	- 55 to 150	°C				

Major Ratings and Characteristics

Description/ Features

The MBRS360TRPbF surface-mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Lead-Free ("PbF" suffix)

MBRS360TRPbF

Bulletin PD-20412 07/04

International

Voltage Ratings

	Partnumber	MBRS360PbF
V_{R}	Max. DC Reverse Voltage (V)	60
V _{RWM} Max. Working Peak Reverse Voltage (V)		

Absolute Maximum Ratings

	Parameters	Value	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current	3.0	A	50% duty cycle @ T _L = 118 °C, rectangular wave for	
		4.0		50% duty cycle @ $T_L = 105 \degree C$, r	ectangular wave form
I _{FSM}	Max. Peak One Cycle Non-Repetitive	790	А	5µs Sine or 3µs Rect. pulse	Following any rated load condition and
	SurgeCurrent	80		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
E _{AS}	Non Repetitive Avalanche Energy	5.0	mJ	T _J =25°C, I _{AS} =1.0A, L=10mH	
I _{AR}	Repetitive Avalanche Current	1.0	A	Current decaying linearly to zero Frequency limited by T _J max. V	oin1µsec a=1.5xVr typical

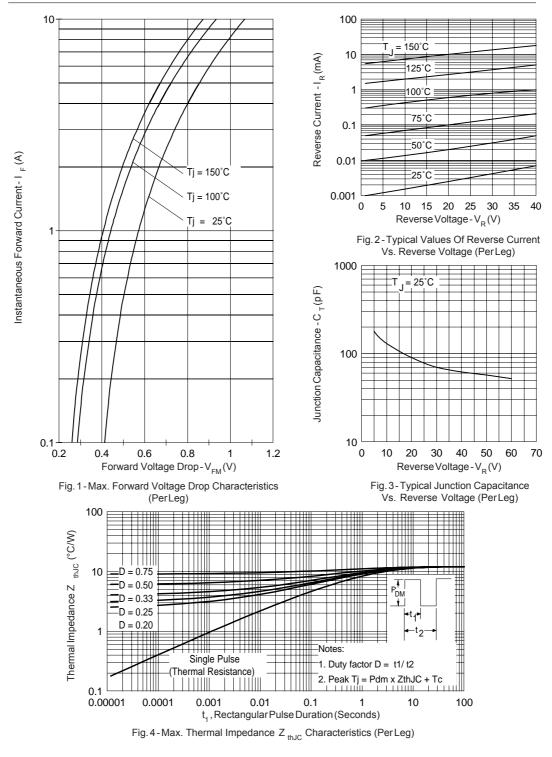
Electrical Specifications

	Parameters		Тур	Max	Units	Conditions	;
V _{EM}	Max. Forward Voltage Drop	(1)	0.57	0.74	V	@ 3A	T - 25 °C
			0.72	0.9	V	@ 6A	T _J = 25 °C
			0.51	0.61	V	@ 3A	T 405.00
			0.62	0.77	V	@ 6A	T _J = 125 °C
I _{RM}	Max. Reverse Leakage	(1)	-	0.5	mA	T _J = 25 °C	
	Current		-	20	mA	T _J = 100°C	V_{R} = rated V_{R}
			-	30	mA	T _J = 125 °C	
CT	Max. Junction Capacitance		-	180	pF	V_R = 5 V_{DC} (test signal range 100KHz to 1Mhz) 25°C	
L _S	Typical Series Inductance		-	3.0	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change		-	10000	V/µs	(Rated V _R)	

(1) Pulse Width < 300µs, Duty Cycle < 2%

Thermal-Mechanical Specifications

	Parameters	Value	Units	Conditions
TJ	Max. Junction Temperature Range (*)	- 55 to 150	°C	
T _{stg}	Max. Storage Temperature Range	- 55 to 150	°C	
R _{thJL}	Max. Thermal Resistance Junction to Lead (**)	12	°C/W	DCoperation
R _{thJA}	Max. Thermal Resistance Junction to Ambient	46	°C/W	DC operation
wt	Approximate Weight	0.24(0.008)	g(oz.)	
	Case Style	SMC		Similar to DO-214AB
	Device Marking	IR36		


 $\frac{\binom{*}{dT_j}}{dT_j} < \frac{1}{Rth(j-a)}$ thermal runaway condition for a diode on its own heatsink

(**) Mounted 1 inch square PCB

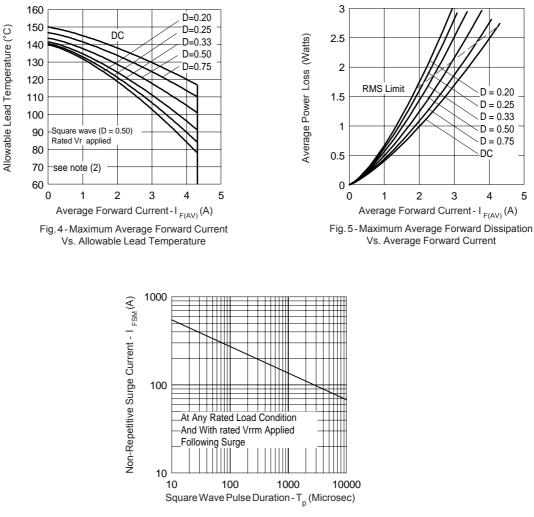
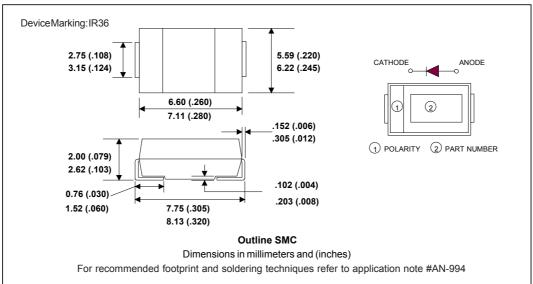
International

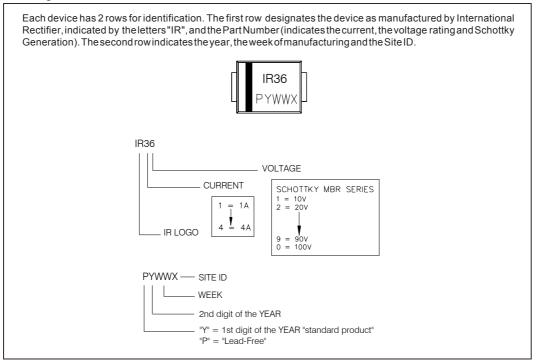
MBRS360TRPbF

Bulletin PD-20412 07/04

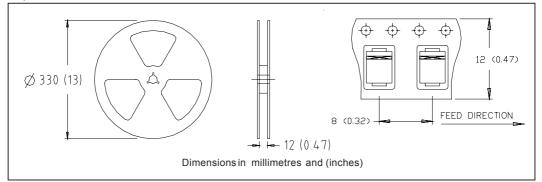
www.irf.com

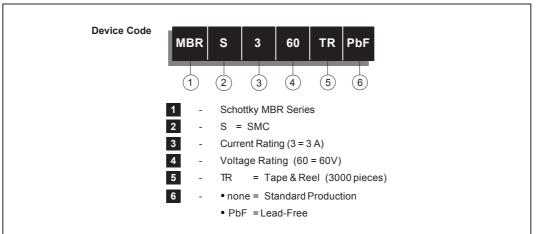
5


Fig. 6 - Maximum Peak Surge Forward Current Vs. Pulse Duration

⁽²⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $\mathsf{Pd} = \mathsf{Forward} \; \mathsf{Power} \; \mathsf{Loss} = \mathsf{I}_{\mathsf{F}(\mathsf{AV})} \, \mathsf{x} \, \mathsf{V}_{\mathsf{FM}} \, \textcircled{0} \; (\mathsf{I}_{\mathsf{F}(\mathsf{AV})} \, / \, \mathsf{D}) \quad (\mathsf{see} \; \mathsf{Fig.} \; \mathsf{6});$ Pd_{REV} = Inverse Power Loss = $V_{R1} \times I_R (1 - D)$; $I_R \otimes V_{R1}$ = 80% rated V_R


Outline Table


Marking & Identification

Tape & Reel Information

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 07/04

www.irf.com