Triple PECL to ECL Translator

The MC100LVEL/EL91 is a triple PECL to ECL translator. The MC100LVEL91 receives low voltage PECL signals and translates them to differential ECL output signals. The MC100EL91 receives standard voltage PECL signals and translates them to differential ECL output signals.

- MC100LVEL91 Supports Low Voltage Operation
- MC100LVEL91 Has 620ps Typical Propagation Delays
- MC100EL91 Supports Standard Voltage Operation
- MC100EL91 Has 670ps Typical Propagation Delays
- Fully Differential Design
- 20-lead SOIC Packaging

A V_{BB} output is provided for interfacing with single ended PECL signals at the input. If a single ended input is to be used the V_{BB} output should be connected to the D input. The active signal would then drive the D input. When used the V_{BB} output should be bypassed to ground via a 0.01µF capacitor. The V_{BB} output is designed to act as the switching reference for the EL/LVEL91 under single ended input switching conditions, as a result this pin can only source/sink up to 0.5mA of current.

To accomplish the level translation the EL/LVEL91 requires three power rails. The V_{CC} supply should be connected to the positive supply, and the V_{EE} pin should be connected to the negative power supply. The GND pins are connected to the system ground plain. Both V_{EE} and V_{CC} should be bypassed to ground via 0.01µF capacitors.

Under open input conditions, the D input will be biased at $V_{CC}/2$ and the D input will be pulled to GND. This condition will force the Q output to a low, ensuring stability.

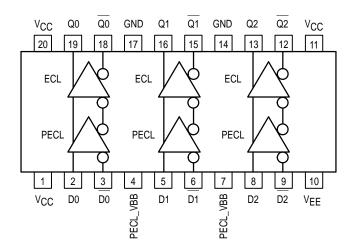


Figure 1. 20-Lead Pinout (Top View) and Logic Diagram

MC100LVEL91 MC100EL91

PIN NAMES

Pins	Function
Dn	PECL/LVPECL Inputs
Qn	ECL/LVECL Outputs
PECL_V _{BB}	PECL Reference Voltage Output

8/97

MC100LVEL91 MC100EL91

LVPECL INPUT DC CHARACTERISTICS

		-40	D∘C	0°C		25°C			85	°C		
Symbol	Characteristic	Min	Max	Min	Max	Min	Тур	Max	Min	Max	Unit	Condition
VCC	Power Supply Voltage	3.0	3.6	3.0	3.6	3.0	3.3	3.6	3.0	3.6	V	
Ιн	Input HIGH Current		150		150			150		150	μΑ	
۱ _{IL}	Input LOW Current	0.5		0.5		0.5			0.5		μΑ	
VIH	Input HIGH Voltage (Note 1.)	2.135	2.420	2.135	2.420	2.135		2.420	2.135	2.420	V	V _{CC} = 3.3V
VIL	Input LOW Voltage (Note 1.)	1.49	1.825	1.49	1.825	1.49		1.825	1.49	1.825	V	V _{CC} = 3.3V
V _{BB}	Reference Output (Note 1.)	1.92	2.04	1.92	2.04	1.92		2.04	1.92	2.04	V	V _{CC} = 3.3V
IGND	Power Supply Curremt		10		10		6.0	10		10	mA	

1. DC levels vary 1:1 with V_{CC}.

PECL INPUT DC CHARACTERISTICS

		-40	D°C	°C 0°C			25°C		85	°C		
Symbol	Characteristic	Min	Max	Min	Max	Min	Тур	Max	Min	Max	Unit	Condition
VCC	Power Supply Voltage	4.75	5.25	4.75	5.25	4.75	5.0	5.25	4.75	5.25	V	
Iн	Input HIGH Current		150		150			150		150	μΑ	
۱ _{IL}	Input LOW Current	0.5		0.5		0.5			0.5		μΑ	
VIH	Input HIGH Voltage (Note 2.)	3.835	4.120	3.835	4.12	3.835		4.12	3.835	4.120	V	V _{CC} = 5.0V
VIL	Input LOW Voltage (Note 2.)	3.19	3.525	3.19	3.525	3.19		3.525	3.19	3.525	V	V _{CC} = 5.0V
V_{BB}	Reference Output (Note 2.)	3.62	3.74	3.62	3.74	3.62		3.74	3.62	3.75	V	V _{CC} = 5.0V
I _{GND}	Power Supply Curremt		11		11		6.0	11		11	mA	

2. DC levels vary 1:1 with V_{CC}.

ECL/LVECL OUTPUT DC CHARACTERISTICS

		-40°C		0°C		25°C			85	°C		
Symbol	Characteristic	Min	Max	Min	Max	Min	Тур	Max	Min	Max	Unit	Condition
V _{EE}	Power Supply EL91 Voltage LVEL91	-4.2 -3.0	-5.5 -3.8	-4.2 -3.0	-5.5 -3.8	-4.2 -3.0	-4.5 -3.3	-5.5 -3.8	-4.2 -3.0	-5.5 -3.8	V	
VOH	Output HIGH Voltage	-1085	-880	-1025	-880	-1025	-955	-880	-1025	-880	mV	
VOL	Output LOW Volrage	-1830	-1555	-1810	-1620	-1810	-1705	-1620	-1810	-1620	mV	
IEE	Power Supply EL91 Current LVEL91		28 27		28 27		22 21	28 27		30 29	mA	

MC100LVEL91 AC CHARACTERISTICS ($V_{EE} = -3.0V$ to -3.8V; $V_{CC} = 3.0V$ to 3.6V)

			–40°C			0°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Unit										
^t PLH ^t PHL	Propagation Delay Dif D to Q S.E	490 440	590 590	690 740	510 460	610 610	710 760	520 470	620 620	720 770	560 510	660 660	760 810	ps	
^t SKEW	Skew Output-to-Output (Note 3. Part-to-Part (Diff) (Note 3. Duty Cycle (Diff) (Note 4.		40 25	100 200	ps										
V _{PP}	Minimum Input Swing (Note 5.)	200			200			200			200			mV	
VCMR	Common Mode Range (Note 6.) $V_{PP} < 500 \text{mV}$ $V_{PP} \ge 500 \text{mV}$	1.3 1.5		V _{CC} -0.2 V _{CC} -0.2	1.2 1.4		V _{CC} -0.2 V _{CC} -0.2	1.2 1.4		V _{CC} -0.2 V _{CC} -0.2	1.2 1.4		V _{CC} -0.2 V _{CC} -0.2	V	
t _r t _f	Output Rise/Fall Times Q (20% – 80%)	320	400	580	320	400	580	320	400	580	320	400	580	ps	

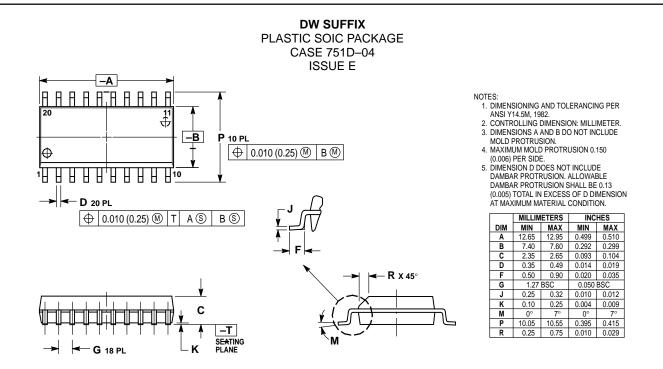
Skews are valid across specified voltage range, part-to-part skew is for a given temperature.
 Duty cycle skew is the difference between a TPLH and TPHL propagation delay through a device.

Minimum input swing for which AC parameters guaranteed. The device has a DC gain of ≈40. 5.

The CMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within 6. the specified range and the peak-to-peak voltage lies between Vppmin and 1V.

MC100EL91 AC CHARACTERISTICS ($V_{EE} = -4.20V$ to -5.5V; $V_{CC} = 4.75V$ to 5.25V)

		–40°C			0°C				25°C					
Symbol	Characteristic	Min	Тур	Max	Unit									
^t PLH ^t PHL	Propagation Delay D to Q (Note 11.) Diff S.E.	540 490	640 640	740 790	560 510	660 660	760 810	570 520	670 670	770 820	610 560	710 710	810 860	ps
^t SKEW	Skew Output-to-Output (Note 7.) Part-to-Part (Diff) (Note 7.) Duty Cycle (Diff) (Note 8.)		40 25	100 200	ps									
V _{PP}	Minimum Input Swing (Note 9.)	200			200			200			200			mV
VCMR	Common Mode Range (Note 10.) Vpp < 500mV Vpp ≥ 500mV	1.3 1.5		V _{CC} -0.2 V _{CC} -0.2	1.2 1.4		V _{CC} -0.2 V _{CC} -0.2	1.2 1.4		V _{CC} -0.2 V _{CC} -0.2	1.2 1.4		V _{CC} -0.2 V _{CC} -0.2	V
t _r t _f	Output Rise/Fall Times Q (20% – 80%)	320	400	580	320	400	580	320	400	580	320	400	580	ps


Skews are valid across specified voltage range, part-to-part skew is for a given temperature.
 Duty cycle skew is the difference between a TPLH and TPHL propagation delay through a device.

Minimum input swing for which AC parameters guaranteed. The device has a DC gain of ≈40. 9.

10. The CMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between Vppmin and 1V.

11. The MC100EL91 design has different propagation delays compared to the MC100LVEL91 due to differences in the translation structure.

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and *Q* are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447

Customer Focus Center: 1-800-521-6274

 Mfax™: RMFAX0@email.sps.mot.com
 - TOUCHTONE 1–602–244–6609

 Motorola Fax Back System
 - US & Canada ONLY 1–800–774–1848

 - http://sps.motorola.com/mfax/

HOME PAGE: http://motorola.com/sps/

Mfax is a trademark of Motorola, Inc.

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1, Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

MC100LVEL91/D

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com