MC34060A，MC33060A

Fixed Frequency，PWM， Voltage Mode Single Ended Controllers

The MC34060A is a low cost fixed frequency，pulse width modulation control circuit designed primarily for single－ended SWITCHMODE ${ }^{\text {TM }}$ power supply control．

The MC34060A is specified over the commercial operating temperature range of 0° to $+70^{\circ} \mathrm{C}$ ，and the MC33060A is specified over an automotive temperature range of -40° to $+85^{\circ} \mathrm{C}$ ．
－Complete Pulse Width Modulation Control Circuitry
－On－Chip Oscillator with Master or Slave Operation
－On－Chip Error Amplifiers
－On－Chip 5．0 V Reference，1．5\％Accuracy
－Adjustable Dead－Time Control
－Uncommitted Output Transistor Rated to 200 mA Source or Sink
－Undervoltage Lockout

PIN CONNECTIONS

（Top View）

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 14 of this data sheet．

MC34060A, MC33060A

MAXIMUM RATINGS (Full operating ambient temperature range applies, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	42	V
Collector Output Voltage	V_{C}	42	V
Collector Output Current (Note 1)	I_{C}	500	mA
Amplifier Input Voltage Range	$\mathrm{V}_{\text {in }}$	-0.3 to +42	V
Power Dissipation @ $\mathrm{T}_{\mathrm{A}} \leq 45^{\circ} \mathrm{C}$	P_{D}	1000	mW
Operating Junction Temperature	T_{J}	125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range For MC34060A For MC33060A	T_{A}	0 to +70 -40 to +85	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristics	Symbol	P Suffix Package	D Suffix Package	Unit
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	80	120	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Derating Ambient Temperature	T_{A}	45	45	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Condition/Value	Symbol	Min	Typ	Max	Unit
Power Supply Voltage	V_{CC}	7.0	15	40	V
Collector Output Voltage	V_{C}	-	30	40	V
Collector Output Current	I_{C}	-	-	200	mA
Amplifier Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3	-	$\mathrm{V}_{\mathrm{CC}}-2$	V
Current Into Feedback Terminal	I_{fb}	-	-	0.3	mA
Reference Output Current	$\mathrm{I}_{\text {ref }}$	-	-	10	mA
Timing Resistor	R_{T}	1.8	47	500	$\mathrm{k} \Omega$
Timing Capacitor	C_{T}	0.00047	0.001	10	$\mu \mathrm{~F}$
Oscillator Frequency	$\mathrm{f}_{\mathrm{osc}}$	1.0	25	200	kHz
PWM Input Voltage (Pins 3 and 4)	-	-0.3	-	5.3	V

[^0]
MC34060A, MC33060A

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\right.$, unless otherwise noted. For typical values $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, for min/max values T_{A} is the operating ambient temperature range that applies, unless otherwise noted.)

Characteristics	Symbol	Min	Typ	Max	Unit
REFERENCE SECTION					
$\begin{gathered} \text { Reference Voltage }\left(\mathrm{l}_{\mathrm{O}}=1.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}} 25^{\circ} \mathrm{C}\right) \\ \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}-\mathrm{MC} 34060 \mathrm{~A} \\ -\mathrm{MC} 33060 \mathrm{~A} \end{gathered}$	$\mathrm{V}_{\text {ref }}$	$\begin{gathered} \hline 4.925 \\ 4.9 \\ 4.85 \end{gathered}$	5.0	$\begin{gathered} \hline 5.075 \\ 5.1 \\ 5.1 \end{gathered}$	V
Line Regulation ($\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V}$ to $40 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$)	Regline	-	2.0	25	mV
Load Regulation ($\mathrm{l}_{\mathrm{O}}=1.0 \mathrm{~mA}$ to 10 mA)	Regload	-	2.0	15	mV
Short Circuit Output Current ($\mathrm{V}_{\text {ref }}=0 \mathrm{~V}$)	Isc	15	35	75	mA

OUTPUT SECTION

Collector Off-State Current ($\mathrm{V}_{\text {CC }}=40 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=40 \mathrm{~V}$)	$I_{\text {(off) }}$	-	2.0	100	$\mu \mathrm{A}$
Emitter Off-State Current ($\left.\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0 \mathrm{~V}\right)$	$\mathrm{I}_{\mathrm{E} \text { (off) }}$	-	-	-100	$\mu \mathrm{A}$
```Collector-Emitter Saturation Voltage (Note 2) Common-Emitter \(\left(\mathrm{V}_{\mathrm{E}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}\right)\) Emitter-Follower \(\left(\mathrm{V}_{\mathrm{C}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=-200 \mathrm{~mA}\right)\)```	$\begin{aligned} & V_{\text {sat }(C)} \\ & V_{\text {sat( }}(\mathrm{E}) \end{aligned}$		$1.1$ $1.5$	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	V
Output Voltage Rise Time ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ) Common-Emitter (See Figure 12) Emitter-Follower (See Figure 13)	$\mathrm{t}_{r}$	-	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	ns
Output Voltage Fall Time $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ Common-Emitter (See Figure 12) Emitter-Follower (See Figure 13)	$\mathrm{t}_{\mathrm{r}}$	-	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	ns

ERROR AMPLIFIER SECTION

Input Offset Voltage ( $\mathrm{V}_{\text {O[Pin 3] }}=2.5 \mathrm{~V}$ )	$\mathrm{V}_{10}$	-	2.0	10	mV
Input Offset Current ( $\mathrm{V}_{\text {[PPin 3] }}=2.5 \mathrm{~V}$ )	10	-	5.0	250	nA
Input Bias Current ( $\mathrm{V}_{\text {O[Pin 3] }}=2.5 \mathrm{~V}$ )	$\mathrm{IIB}^{\text {I }}$	-	-0.1	-2.0	$\mu \mathrm{A}$
Input Common Mode Voltage Range $\left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}\right)$	$\mathrm{V}_{\text {ICR }}$	$\begin{gathered} 0 \text { to } \\ \mathrm{V}_{\mathrm{CC}}-2.0 \end{gathered}$	-	-	V
Inverting Input Voltage Range	$\mathrm{V}_{\mathrm{IR}(1 \mathrm{NV})}$	$\begin{gathered} -0.3 \text { to } \\ \mathrm{V}_{\mathrm{CC}}-2.0 \end{gathered}$	-	-	V
Open-Loop Voltage Gain $\left(\Delta \mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right)$	Avol	70	95	-	dB
Unity-Gain Crossover Frequency $\left(\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}\right.$ to $\left.3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right)$	$\mathrm{f}_{\mathrm{c}}$	-	600	-	kHz
Phase Margin at Unity-Gain $\left(\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}\right.$ to $\left.3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right)$	$\phi_{\mathrm{m}}$	-	65	-	deg.
Common Mode Rejection Ratio $\left.\left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0 \mathrm{~V} \text { to } 38 \mathrm{~V}\right)\right)$	CMRR	65	90	-	dB
Power Supply Rejection Ratio $\left(\Delta \mathrm{V}_{\mathrm{CC}}=33 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right)$	PSRR	-	100	-	dB
Output Sink Current ( $\mathrm{V}_{\text {O[Pin 3] }}=0.7 \mathrm{~V}$ )	$\mathrm{I}^{-}$	0.3	0.7	-	mA
Output Source Current ( $\mathrm{V}_{\text {O[Pin 3] }}=3.5 \mathrm{~V}$ )	$\mathrm{I}^{+}$	-2.0	-4.0	-	mA

2. Low duty cycle techniques are used during test to maintain junction temperature as close to ambient temperatures as possible.
$\mathrm{T}_{\text {low }}=-40^{\circ} \mathrm{C}$ for MC33060A
$\begin{aligned} \mathrm{T}_{\text {high }} & =+85^{\circ} \mathrm{C} \text { for MC33060A } \\ & =+70^{\circ} \mathrm{C} \text { for MC34060 }\end{aligned}$
$=0^{\circ} \mathrm{C}$ for MC34060A
$=+70^{\circ} \mathrm{C}$ for MC34060A

## MC34060A, MC33060A

ELECTRICAL CHARACTERISTICS (continued) ( $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega$, unless otherwise noted.
For typical values $T_{A}=25^{\circ} \mathrm{C}$, for min/max values $\mathrm{T}_{\mathrm{A}}$ is the operating ambient temperature range that applies, unless otherwise noted.)

Characteristics	Symbol	Min	Typ	Max	Unit
PWM COMPARATOR SECTION (Test circuit Figure 11)					
Input Threshold Voltage (Zero Duty Cycle)	$\mathrm{V}_{\text {TH }}$	-	3.5	4.5	V
Input Sink Current $\left(\mathrm{V}_{[\text {Pin } 3]}=0.7 \mathrm{~V}\right)$	1	0.3	0.7	-	mA

DEAD-TIME CONTROL SECTION (Test circuit Figure 11)

Input Bias Current (Pin 4)   $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right.$ to 5.25 V$)$	$\mathrm{I}_{\mathrm{IB}(\mathrm{DT})}$	-	-1.0	-10	$\mu \mathrm{~A}$
Maximum Output Duty Cycle   $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\right)$   $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=47 \mathrm{k} \Omega\right)$	DC max				
Input Threshold Voltage (Pin 4)   (Zero Duty Cycle)   (Maximum Duty Cycle)		-	90	100	$\%$

## OSCILLATOR SECTION

$\begin{aligned} & \text { Frequency } \\ & \left(\mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}-\mathrm{MC} 34060 \mathrm{~A} \\ & (\mathrm{MC} 33060 \mathrm{~A} \\ & \left(\mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=47 \mathrm{k} \Omega\right) \end{aligned}$	$\mathrm{f}_{\text {osc }}$	$\begin{aligned} & 9.7 \\ & 9.5 \\ & 9.0 \\ & - \end{aligned}$	$\begin{gathered} 10.5 \\ - \\ - \\ 25 \end{gathered}$	$\begin{gathered} 11.3 \\ 11.5 \\ 11.5 \\ - \end{gathered}$	kHz
Standard Deviation of Frequency* $\left(\mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=47 \mathrm{k} \Omega\right)$	бfosc	-	1.5	-	\%
Frequency Change with Voltage $\left(\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V} \text { to } 40 \mathrm{~V}\right)$	$\Delta \mathrm{f}_{\text {osc }}(\Delta \mathrm{V})$	-	0.5	2.0	\%
$\begin{aligned} & \text { Frequency Change with Temperature } \\ & \left(\Delta \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}\right) \\ & \left(\mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\right) \end{aligned}$	$\Delta \mathrm{f}_{\text {osc }}(\Delta \mathrm{T})$	-	4.0	-	\%

UNDERVOLTAGE LOCKOUT SECTION

Turn-On Threshold ( $\mathrm{V}_{\mathrm{CC}}$ increasing, $\mathrm{I}_{\text {ref }}=1.0 \mathrm{~mA}$ )	$\mathrm{V}_{\text {th }}$	4.0	4.7	5.5	V
Hysteresis	$\mathrm{V}_{\mathrm{H}}$	50	150	300	mV

TOTAL DEVICE

Standby Supply Current   (Pin 6 at $\mathrm{V}_{\text {ref }}$ all other inputs and outputs open) $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}\right) \end{aligned}$	$\mathrm{I}_{\mathrm{CC}}$	-	$\begin{aligned} & 5.5 \\ & 7.0 \end{aligned}$	10 15	mA
Average Supply Current $\left(\mathrm{V}_{\text {[Pin 4] }}=2.0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=47 \mathrm{k} \Omega\right)$. See Figure 11 .	Is	-	7.0	-	mA

[^1]

Figure 1. Block Diagram

## Description

The MC34060A is a fixed-frequency pulse width modulation control circuit, incorporating the primary building blocks required for the control of a switching power supply (see Figure 1). An internal-linear sawtooth oscillator is frequency-programmable by two external components, $\mathrm{R}_{\mathrm{T}}$ and $\mathrm{C}_{\mathrm{T}}$. The approximate oscillator frequency is determined by:

$$
f_{o s c} \cong \frac{1.2}{R_{T} \cdot C_{T}}
$$

Output pulse width modulation is accomplished by comparison of the positive sawtooth waveform across capacitor $\mathrm{C}_{\mathrm{T}}$ to either of two control signals. The output is enabled only during that portion of time when the sawtooth voltage is greater than the control signals. Therefore, an increase in control-signal amplitude causes a corresponding linear decrease of output pulse width. (Refer to the Timing Diagram shown in Figure 2.)

For more information refer to Figure 3.


Figure 2. Timing Diagram

## MC34060A, MC33060A

## APPLICATIONS INFORMATION

The control signals are external inputs that can be fed into the dead-time control, the error amplifier inputs, or the feed-back input. The dead-time control comparator has an effective 120 mV input offset which limits the minimum output dead time to approximately the first $4 \%$ of the sawtooth-cycle time. This would result in a maximum duty cycle of $96 \%$. Additional dead time may be imposed on the output by setting the dead time-control input to a fixed voltage, ranging between 0 V to 3.3 V .

The pulse width modulator comparator provides a means for the error amplifiers to adjust the output pulse width from the maximum percent on-time, established by the dead time control input, down to zero, as the voltage at the feedback
pin varies from 0.5 V to 3.5 V . Both error amplifiers have a common mode input range from -0.3 V to $\left(\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}\right)$, and may be used to sense power supply output voltage and current. The error-amplifier outputs are active high and are ORed together at the noninverting input of the pulse-width modulator comparator. With this configuration, the amplifier that demands minimum output on time, dominates control of the loop.

The MC34060A has an internal 5.0 V reference capable of sourcing up to 10 mA of load currents for external bias circuits. The reference has an internal accuracy of $\pm 5 \%$ with a typical thermal drift of less than 50 mV over an operating temperature range of $0^{\circ}$ to $+70^{\circ} \mathrm{C}$.


Figure 3. Oscillator Frequency versus Timing Resistance


Figure 5. Percent Deadtime versus Oscillator Frequency


Figure 7. Emitter-Follower Configuration
Output Saturation Voltage versus
Emitter Current


Figure 4. Open Loop Voltage Gain and Phase versus Frequency


Figure 6. Percent Duty Cycle versus Dead-Time Control Voltage


Figure 8. Common-Emitter Configuration
Output Saturation Voltage versus Collector Current

## MC34060A, MC33060A



Figure 9. Standby Supply Current versus Supply Voltage


Figure 11. Error Amplifier Characteristics


Figure 13. Common-Emitter Configuration and Waveform


Figure 10. Undervoltage Lockout Thresholds versus Reference Load Current


Figure 12. Deadtime and Feedback Control


Figure 14. Emitter-Follower Configuration and Waveform

## MC34060A, MC33060A



Figure 15. Error Amplifier Sensing Techniques


Figure 16. Deadtime Control Circuit


Figure 17. Soft-Start Circuit


Figure 18. Slaving Two or More Control Circuits

## MC34060A, MC33060A



Figure 19. Step-Down Converter with Soft-Start and Output Current Limiting

## MC34060A, MC33060A



Test	Conditions	Results
Line Regulation	$\mathrm{V}_{\mathrm{in}}=8.0 \mathrm{~V}$ to $26 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.5 \mathrm{~A}$	$40 \mathrm{mV} \quad 0.14 \%$
Load Regulation	$\mathrm{V}_{\mathrm{in}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~mA}$ to 0.5 A	$5.0 \mathrm{mV} \quad 0.18 \%$
Output Ripple	$\mathrm{V}_{\mathrm{in}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.5 \mathrm{~A}$	24 mV p-p P.A.R.D.
Efficiency	$\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.5 \mathrm{~A}$	$75 \%$

*Optional circuit to minimize output ripple

Figure 20. Step-Up Converter

## MC34060A, MC33060A



Test	Conditions	Results
Line Regulation	$\mathrm{V}_{\text {in }}=8.0 \mathrm{~V}$ to $40 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}$	$52 \mathrm{mV} \quad 0.35 \%$
Load Regulation	$\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0$ to 250 mA	$47 \mathrm{mV} \quad 0.32 \%$
Output Ripple	$\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}$	10 mV p-p P.A.R.D.
Short Circuit Current	$\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega$	330 mA
Efficiency	$\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}$	$86 \%$

*Optional circuit to minimize output ripple

Figure 21. Step-Up/Down Voltage Inverting Converter with Soft-Start and Current Limiting

## MC34060A, MC33060A



## MC34060A, MC33060A

ORDERING INFORMATION

Device	Operating Temperature Range	Package	Shipping
MC34060AD	$\mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	SO-14	55 Units/Rail
MC34060ADR2		SO-14	2500 Tape \& Reel
MC34060AP		PDIP-14	25 Units/Rail
MC33060AD	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-14	55 Units/Rail
MC33060ADR2		SO-14	2500 Tape \& Reel
MC33060AP		PDIP-14	25 Units/Rail

## MC34060A, MC33060A

## PACKAGE DIMENSIONS

PDIP-14
P SUFFIX
CASE 646-06
ISSUE M


SO-14
D SUFFIX
CASE 751A-03
ISSUE F


## MC34060A, MC33060A

SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.

ON Semiconductor and $\square$ are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

## PUBLICATION ORDERING INFORMATION

Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.


[^0]:    1. Maximum thermal limits must be observed.
[^1]:    

