Silicon Controlled Rectifiers Reverse Blocking Triode Thyristors

... PNPN devices designed for high volume, low cost consumer applications such as temperature, light and speed control; process and remote control; and warning systems where reliability of operation is critical.

Small Size

REYd.com

- Passivated Die Surface for Reliability and Uniformity
- Low Level Triggering and Holding Characteristics
- Recommend Electrical Replacement for C106
- Available in Two Package Styles:

Surface Mount Leadforms — Case 369A

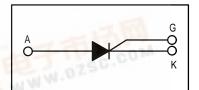
Miniature Plastic Package — Straight Leads — Case 369

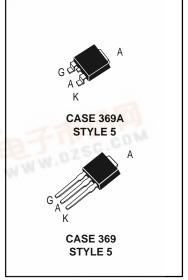
ORDERING INFORMATION

- To Obtain "DPAK" in Surface Mount Leadform (Case 369A): Shipped in Sleeves - No Suffix, i.e., MCR706A Shipped in 16 mm Tape and Reel — Add "RL" Suffix to Device Number, i.e., MCR706ARL
- To Obtain "DPAK" in Straight Lead Version: Shipped in Sleeves — Add '1' Suffix to Device Number, i.e., MCR706A1

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted.)

Charac	eristic	Symbol	Value	Unit
Peak Repetitive Forward an (1) (1/2 Sine Wave) (R _{GK} = 1000 Ohms, T _C = -40 to +110°C)	MCR703A1, MCR703A MCR704A1, MCR704A MCR706A1, MCR706A MCR708A1, MCR708A	VDRM or VRRM	100 200 400 600	Volts
Peak Non-repetitive Reverse (1/2 Sine Wave, R _{GK} = 10 T _C = -40 to +110°C)		VRSM	150 250 450 650	Volts
Average On-State Current	$(T_C = -40 \text{ to } +90^{\circ}\text{C})$ $(T_C = +100^{\circ}\text{C})$	I _{T(AV)}	2.6 1.6	Amps
(1)	2 Sine Wave, 60 Hz, T _C = 0°C) 2 Sine Wave, 1.5 ms T _C = 0°C)	ITSM	25 35	Amps
Circuit Fusing (t = 8.3 ms)		I ² t	2.6	A ² s
Peak Gate Power (Pulse Width = 10 μs, T _C = 90°C)		PGM	0.5	Watt
Average Gate Power (t = 8.3 ms, T _C = 90°C)		PG(AV)	0.1	Watt
Peak Forward Gate Current		I _{GM}	0.2	Amp
Peak Reverse Gate Voltage		VRGM	6	Volts
Operating Junction Temperature Range		ТЈ	-40 to +110	°C
Storage Temperature Range		T _{stg}	-40 to +150	°C


1. VDRM and VRRM for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.


erred devices are Motorola recommended choices for future use and best overall value.

MCR703A thru MCR708A*

*Motorola preferred devices

SCRs 4.0 AMPERES RMS 100 thru 600 VOLTS

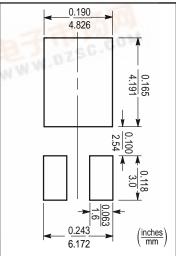


Figure 1. Minimum Pad Sizes for **Surface Mounting**

MCR703A thru MCR708A

THERMAL CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Thermal Resistance, Junction to Case	$R_{ heta JC}$		8.33	°C/W
Thermal Resistance, Junction to Ambient (Case 369A-04) ⁽¹⁾	$R_{ heta JA}$	_	80	°C/W
Thermal Resistance, Junction to Ambient (Case 369-03)(2)	$R_{ heta JA}$		85	°C/W

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ and $R_{GK} = 1000$ ohms unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Peak Forward or Reverse Blocking Current (VAK = Rated VDRM or VRRM) TC = 25°C TC = 110°C	I _{DRM} , I _{RRM}	_	_	10 200	μΑ
Peak Forward "On" Voltage (I _{TM} = 8.2 A Peak, Pulse Width = 1 to 2 ms, 2% Duty Cycle)	V _{TM}	_	_	2.2	Volts
Gate Trigger Current (Continuous dc) ⁽³⁾ ($V_{AK} = 12 \text{ Vdc}$, $R_L = 24 \text{ Ohms}$) ($V_{AK} = 12 \text{ Vdc}$, $R_L = 24 \text{ Ohms}$, $T_C = -40^{\circ}\text{C}$)	I _{GT}		25 —	75 300	μΑ
Gate Trigger Voltage (Continuous dc) (Source Voltage = 12 V, R_S = 50 Ohms) (V_{AK} = 12 Vdc, R_L = 24 Ohms, T_C = -40°C)	V _G T	_	_	1	Volts
Gate Non-Trigger Voltage (V _{AK} = Rated V _{DRM} , R _L = 100 Ohms, T _C = 110°C)	V _{GD}	0.2	_	_	Volts
Holding Current ($V_{AK} = 12 \text{ Vdc}$, $I_{GT} = 2 \text{ mA}$) $T_{C} = 25^{\circ}\text{C}$ (Initiating On-State Current = 200 mA) $T_{C} = -40^{\circ}\text{C}$	lH	_	_	5 10	mA
Total Turn-On Time (Source Voltage = 12 V, $R_S = 6$ k Ohms) ($I_{TM} = 8.2$ A, $I_{GT} = 2$ mA, Rated V_{DRM}) (Rise Time = 20 ns, Pulse Width = 10 μ s)	t _{gt}	_	2	_	μs
Forward Voltage Application Rate $(V_D = Rated \ V_{DRM}, Exponential \ Waveform, T_C = 110^{\circ}C)$	dv/dt		10	_	V/μs

- 1. Case 369A-04 when surface mounted on minimum pad sizes recommended.
- 2. Case 369-03 standing in free air.
- 3. R_{GK} current not included in measurement.

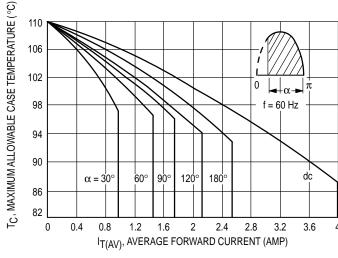
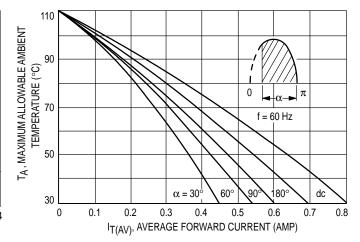
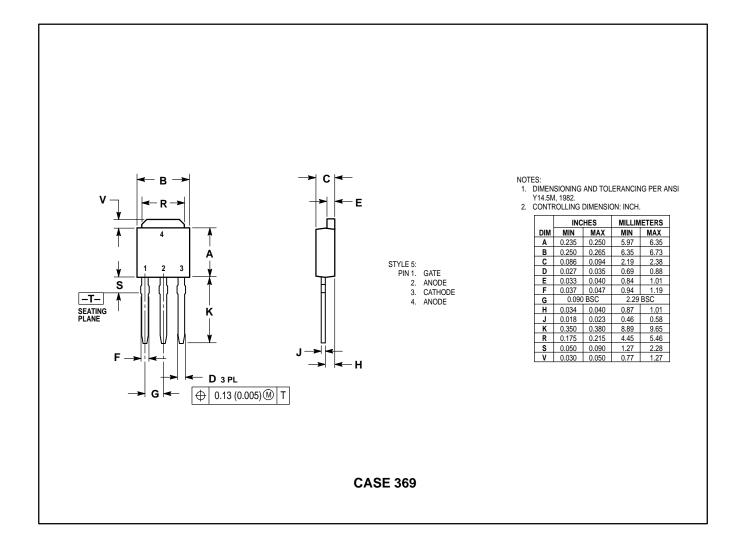
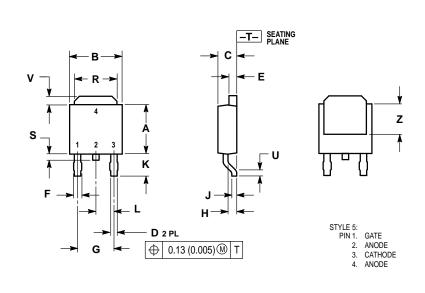


Figure 2. Maximum Case Temperature


Figure 3. Maximum Ambient Temperature

MCR703A thru MCR708A

PACKAGE DIMENSIONS

MCR703A thru MCR708A

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
 VALEEM 1092
- CONTROLLING DIMENSION: INCH.

	INCHES I		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.250	5.97	6.35
В	0.250	0.265	6.35	6.73
C	0.086	0.094	2.19	2.38
ם	0.027	0.035	0.69	0.88
Е	0.033	0.040	0.84	1.01
F	0.037	0.047	0.94	1.19
G	0.180 BSC		4.58 BSC	
Η	0.034	0.040	0.87	1.01
7	0.018	0.023	0.46	0.58
K	0.102	0.114	2.60	2.89
L	0.090 BSC		2.29 BSC	
R	0.175	0.215	4.45	5.46
s	0.020	0.050	0.51	1.27
5	0.020		0.51	
٧	0.030	0.050	0.77	1.27
Z	0.138		3.51	

CASE 369A

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

